• Title/Summary/Keyword: Natural wetland

Search Result 303, Processing Time 0.02 seconds

Change of Wetland Microbial Activities after Creation of Constructed Wetlands (인공습지 조성 후 습지미생물활성도 변화에 관한 연구)

  • Lee, Ja-Yeon;Kim, Bo-Ra;Park, So-Young;Sung, Ki-June
    • Journal of Environmental Science International
    • /
    • v.19 no.1
    • /
    • pp.17-26
    • /
    • 2010
  • To understand the initial changes in the microbial activities of wetland soil after construction, dehydrogenase activity (DHA) and denitrification potential (DNP) of soil from 1 natural wetland and 2 newly constructed wetlands were monitored. Soil samples were collected from the Daepyung marsh as a natural wetland, a treatment wetland in the West Nakdong River, and an experimental wetland in the Pukyong National University, Busan. The results showed that the DHA of the natural wetland soil was 6.1 times higher than that of the experimental wetland and similar to that of the treatment wetland 6 months after wetland construction (fall). Few differences were observed in the DNP between the soil samples from the natural wetland and 2 constructed wetlands four months after wetland construction (summer). However, 6 months after the construction (fall), the DNP of the soil samples from the natural wetland was 12.9 times and 1.8 times higher than that of the experimental wetland and the treatment wetland, respectively. These results suggested that the presence of organic matter as a carbon source in the wetland soil affects the DHA of wetland soil. Seasonal variation of wetland environment, acclimation time under anaerobic or anoxic wetland conditions, and the presence of carbon source also affect the DNP of the wetland soil. The results imply that the newly constructed wetland requires some period of time for having the better contaminant removal performance through biogeochemical processes. Therefore, those microbial activities and related indicators could be considered for wetland management such as operation and performance monitoring of wetlands.

Germination Experiments using Natural Wetland Soil for Introducing Non-emergent Plants into a Constructed Wetland (비정수식물의 인공습지도입을 위한 자연습지토양 발아실험)

  • Yi, Yong-Min;Kang, Dae-Seok;Sung, Ki-June
    • Journal of Wetlands Research
    • /
    • v.11 no.1
    • /
    • pp.39-48
    • /
    • 2009
  • Wetland plants are an important component for wetland design and construction because they determine functions of wetlands through interactions with the abiotic environment such as wetland soil and hydrology as well as with other wetland organisms. In this study, germination experiments with soils from a natural wetland that contain seeds of wetland plants were conducted in wetland mesocosms to investigate the applicability of natural wetland soils for introducing and establishing wetland plants into constructed wetlands. Seven species were germinated in the experiment, with two new species that were not found in the field survey of wetland plants in the West Nakdong River area, Korea. The number of plant individuals germinated in submerged conditions (15 individuals) was much greater than that in waterlogged conditions (2 individuals). In experiments in which soils from a natural wetland and a wetland construction site were mixed at different ratios, the largest number of plant individuals was observed in the condition with 100% natural wetland soil. The highest growth was observed at 50% natural wetland soil for Hydrilla verticillata and 100% for Ceratophyllum demersum. These results suggest that 1:1 mixture of soils from natural wetland wetlands and wetland construction sites would provide an appropriate condition for secure establishment of submerged plants in constructed wetlands.

  • PDF

Development of Pollutant Removal Model in the Artificial Wetland (인공습지의 수질개선 효과 분석모델 개발)

  • Choi, Ji-Yong
    • Journal of Wetlands Research
    • /
    • v.4 no.1
    • /
    • pp.51-61
    • /
    • 2002
  • The wetland is a biologically integrated system consisting of water, soil, bacteria, plants, and animals. The wetland helps sustain the ecosystem, control the micro-climate and flood, maintain the ground water level, and provide fishing grounds. From the environmental standpoint, the wetland plays a vital role in reducing water pollution by filtering out sand and other polluted matters, producing oxygen, absorbing chemicals and nutrients. For these reasons, interest in restoring the wetlands has been steadily increasing. Artificial wetland, which is also referred to as created wetland or constructed wetland, is an alternative to natural wetland. Like natural wetland, artificial wetland is environmentally friendly and can effectively lower pollutant levels. The Korea government is actively reviewing the construction of artificial wetlands in mining and water supply areas to decrease nonpoint pollutant sources. This paper attempts to develop a pollutant removal model for the water quality improvement function of artificial wetlands. Artificial wetland can improve the quality of the water; however, depending on the type of water inflow, vegetation and hydrology, its effect can be different.

  • PDF

Analysis of Seasonal Water Quality Variation of a Natural Wetland in the Nakdong River Basin (낙동강 수계 자연습지의 계절별 수질변화특성 분석)

  • Kim, Young Ryun;Lee, Kwang Sup;Lee, Suk Mo;Kang, Daeseok;Sung, Kijune
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.5
    • /
    • pp.713-719
    • /
    • 2009
  • A natural wetland in the Nakdong River basin which effectively removes non-point source pollutants was investigated for 2 years to understand wetland topography, vegetation types, and water quality characteristics. The water depth of the natural wetland was in the range of 0.5~1.9 m which is suitable for the growth of non-emergent hydrophytes. The wetland has a high length to width ratio (3.3:1) and a relatively large wetland to watershed area ratio (0.057). A broad-crested weir at the outlet increases the retention time of the wetland whose hydrology is mainly dependent on storm events. The concentrations of dissolved oxygen in the growing season and the winter season showed anoxic and oxic conditions, respectively. Diurnal variations of DO and pH in the growing season were also observed due to weather change and submerged plants. COD and TP concentrations were low in the winter season due to low inflow rate and increased retention time. Increased TP concentrations in the spring season were caused by degradation of dead wetland plants. Nitrogen in the wetland was mostly in organic nitrogen form (>75%). During the growing season, ammonium concentration was high but nitrate nitrogen concentration was low, possibly due to anoxic and low pH conditions which are adverse conditions for ammonificaiton and nitrification. The results of this study can be used as preliminary data for design, operation, monitoring and management of a constructed wetland which is designed to treat diffuse pollutants in the Nakdong river watershed.

Pond-Wetland System for the Water Resources Conservation of Estuary Lake (담수호 수자원보전을 위한 유역처리 연못-습지 시스템(지역환경 \circled2))

  • 양홍모;최수명;윤광식
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.557-562
    • /
    • 2000
  • Estuary lakes constructed for agricultural water resources development projects have encountered eutrophication problems. Natural water purification function of wetland is considered for nutrient removal from inflowing stream. A constructed wetland was designed and installed for pollutant loading abatement in estuary lake Koheung. Combined pond-wetland system was adopted. In this system primary and secondary ponds and six wetland cells were interconnected. Reed and cattail were selected for wetland vegetation and planted in the wetland cells. In this paper, design criteria of the pond-wetland system in temperate weather zone is presented.

  • PDF

The Development of An Environmentally Friendly Constructed Wetland System (친환경형 식물 정화조 시스템 개발)

  • Lee, Eun-Heui;Rhee, In-Sook;Jung, Dong-Sun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.4
    • /
    • pp.61-68
    • /
    • 2004
  • The purpose of this study was to develop environmentally friendly constructed wetland system in order to improve the environment. This system was constructed with two constructed wetlands andone pond. The size of the first and second wetland was 2.5m in length, 2.5m in width and 0.7m in depth for the first wetland and 0.6m in depth for the second wetland. Those were filled with pebbles with about 16~32mm in diameter from bottom to 20cm depth and onto the pebbles with about 0.5 mm in diameter sand in depth 40cm. The first constructed Wetland was planted with pragmites communis. The second was planted with Iris pseudoacorus and Acorus calamus var. aneustatus.A vertical flow system was used in the first constructed wetland and a horizontal flow system in the second. The water of outflow from the second wetland flowed into the pond. This system was installed in Yangpyeong, Kyunggi Province. The Quality of inflow and outflow were analyzed at the first time from May 20 to May 30, 2002 and at second time from June 10 to July 18, 2002. At the second period wetland was implanted with microbes in order to improve the efficiency of constructed wetlands. Following standard methods for wastewater, BOD, COD, SS, T-N and T-P were analyzed. This system was effective in reducing COD, BOD, SS, T-N and T-P level. The result shows that wastewater was purified through constructed wetland system with plants and highly purified with microbes especially in T-P. The Average total phosphorous concentration of influent and effluent in constructed wetland with microbes was 2.8mg/${\ell}$ L and 0.21mg/${\ell}$ respectively. This system can be used in rural community because this is not only effective on purification of sewage but also is harmonized with the surrounding nature.

The Study of Current Status of Conservation and Management Policy on Wetlands in Korea (우리나라 습지 보전 현황과 향후 관리방향에 대한 연구)

  • Lee, Sang-Don
    • Journal of Wetlands Research
    • /
    • v.5 no.1
    • /
    • pp.1-13
    • /
    • 2003
  • Conservation of wetlands are important because wetlands are hatcheries for fishes and habitat for migratory birds and mammals. Wetlands also function as a filter for polluted water and material and transition zone for harboring numerous species of plants and animals. This paper reviewed the importance of wetland conservation and policy on management of wetlands in Korea. Wetland Conservation Act(1999) and Maritime Management Act(1999) are two legislation for conservation of wetlands. Wetland Conservation Act is issued by both Ministry of Environment and Ministry of Maritime Affairs and Fisheries. The definition of wetlands are so diverse, but this paper categorized wetlands as both natural and man-made lakes, mud flat areas and inland wetlands. Management application was considered for each wetland categories.

  • PDF

Rapid ecosystem services assessment of Mundok Ramsar wetland in Democratic People's Republic of Korea and opportunities to improve well-being

  • Hyun-Ah Choi;Bernhard Seliger;Donguk Han
    • Journal of Ecology and Environment
    • /
    • v.47 no.2
    • /
    • pp.27-34
    • /
    • 2023
  • Background: The understanding of ecosystem services can be quantified and qualitative to assess the impacts of changes in the ecosystem to support human well-being. In the Democratic People's Republic of Korea, sustainable use of ecosystem services has attracted the interest of a range of decision-makers. However, although there is a concern for biodiversity, natural ecosystem, and their services, linking ecosystems with conservation planning remains challenging. Results: This study assessed the first qualitative ecosystem services provided by the Mundok wetland with decision makers of the West/Yellow Sea region. Furthermore, this study applied the Rapid Assessment Wetland Ecosystem method to support natural resources management, improving living conditions. We identified that cultural and supporting services index are highly provided, but preparing a plan to increase the provisioning and regulating services in Mundok wetland is necessary. Conclusions: The assessment results can provide helpful information for ecosystem services assessment, habitat conservation, conservation planning, and decision-making at local level.

A Study on the Design Criteria of Wastewater Treatment by Contructed Wetland (축조된 습지(wetland)를 이용한 폐수처리의 설계기준에 관한 연구)

  • Yoon, Chun-Gyeong;Chung, Jae-Chun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.4 no.1
    • /
    • pp.61-72
    • /
    • 1996
  • Recently, significant attention is given to the wastewater treatment using Constructed wetland. This is because the wetland system is a kind of natural taeatment system, simple to maintain and it has relatively fewer technical difficulty. Thus, it would be a practical method to employ especially in rural area in Korea. In this paper, the authors dscuss the design criteria of construted wetland developed in USA as an initial feasibility study to adopt it in Korea. We discuss about especially types of vegetation, natural succession and management, planting techniques, seeding teckniques and management after censtruction.

  • PDF

Analysis of Characteristics in the Land Cover Types of Inland Wetlands Using the National Wetland DB at South Korea (국가습지 DB를 활용한 남한 내륙습지의 토지피복 유형 특성 분석)

  • Lee, Ye-Seul;Yoon, Hye-Yeon;Lee, Seong-Ho;JANG, Dong-Ho;Yun, Kwang-Sung;Lee, Chang-Su
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.4
    • /
    • pp.71-88
    • /
    • 2020
  • This study modified the properties and boundaries of the inland wetland types through the structural edit of the National Wetland DB, and analyzed the characteristics of the different land cover by area and the entire inland wetlands of South Korea. The inland wetlands of the Gangwon Basin had a small area of waters. In addition, the ratio of natural barren was high, reflecting the characteristics of the upper reaches of the large river in the east and west part of Gangwon Province. The Geum River Basin had a high percentage of aggregate land due to the development of large alluvial land, and the ratio of artistic barren was low, so various ecosystem service of wetland elements were distributed evenly. The Nakdong River Basin had a high proportion of waters as water level in the channel rose due to the installation of 4 Major Rivers Beam, and the ratio of Natural barren was low. Moreover, the water level of the main attributes flowing into the Nakdong River drainage system was not high, so the ratio of vegetation concentration was high. The Yeongsan River Basin showed that Waters had the high proportion. And the distribution of Natural barrens represented differently according to the Yeongsan River Basin and the Seomjin River Basin. Finally, Sand and Gravels supplied to rivers during precipitation were deposited in the main stream of the Han River Basin, and the differences between the side and high side was large in the area, reflecting the characteristics of the mouth of a river, so the Natural barren of Clay was distributed.