• Title/Summary/Keyword: Natural slope

Search Result 760, Processing Time 0.032 seconds

Statistical Properties of Second Type Central Composite Designs (제2종의 중심합성계획의 통계적 성질)

  • Kim Hyuk-Joo;Park Sung-Hyun
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.2
    • /
    • pp.257-270
    • /
    • 2006
  • Kim(2002) proposed a second type of central composite design in which the positionsof the axial points are indicated by two numbers, and called it CCD2. In the present paper, we have studied CCD2 further and obtained several new facts. We have obtained CCD2's that have both orthogonality and rotatability, both orthogonality and slope rotatability, and both rotatability and uniform precision. We also have applied Park and Kim's (1992) measure of slope rotatability to such CCD2's and observed some useful results.

Slope and Roughness Extraction Method from Terrain Elevation Maps (지형 고도 맵으로부터 기울기와 거칠기 추출 방법)

  • Jin, Gang-Gyoo;Lee, Hyun-Sik;Lee, Yun-Hyung;So, Myung-Ok;Shin, Ok-Keun;Chae, Jeong-Sook;Lee, Young-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.9
    • /
    • pp.909-915
    • /
    • 2008
  • Recently, the interests in the development and application of unmaned robots are increasing in various fields including surveillance and reconnaissance, planet exploration, and disaster relief. Unmaned robots are usually controlled from distance using radio communications but they should be equipped with an autonomous travelling function to cope with unexpected terrains and obstacles. This means that they should be able to evaluate terrain's characteristics quantitatively using mounted sensors so as to traverse harsh natural terrains autonomously. For this purpose, this paper presents a method for extracting terrain information, that is, slope and roughness from elevation maps as a prior step of traversability analysis. Slope is extracted using the curve fitting based on the least squares method and roughness using three metrics and their weighted average. The effectiveness of the proposed method is verified on both a fractal map and the world model map of a real terrain.

Landslide characteristics for Hoengseong area in 2006 (2006년 횡성지역 산사태 발생특성)

  • Yoo, Nam-Jae;Choi, Joon-Sik
    • Land and Housing Review
    • /
    • v.2 no.2
    • /
    • pp.157-162
    • /
    • 2011
  • This paper presents the landslide characteristics occurred in Hoengseong, Gangwondo and around July 16 in 2006, caused by heavy rainfall and antecedent precipitation by two typhoons of Ewiniar and Bilis. The main causes of landslides were antecedent precipitation between July 12 to 13, resulting in weakening grounds by increasing the degree of saturation previously, and the additional heavy rainfall between July 15 to 16. Most of landslides at natural slopes were transitional failures occurred along the boundary between residual weathered soil in shallow depth and hard mother rock. From the results of conclusive analyses for 100 sites in Hoengseong region where landslides occurred, the slope length of landslide and slope width were less than 100m with 87% of frequency and 30m with 74% of frequency, respectively. The average value of slope angles was $24^{\circ}$.

Dynamic Analysis of Monorail System with Magnetic Caterpillar (자석식 무한궤도를 가진 모노레일의 동역학 해석)

  • Won, Jong-Sung;Tak, Tae-Oh
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.47-55
    • /
    • 2012
  • This work deals with dynamic analysis of a monorail system with magnetic caterpillar where magnets are embedded inside each articulated element of the caterpillar, augmenting traction force of main rubber wheels to climb up slope up to 15 degree grade. Considerations are first given to determine stiffness of the primary and secondary suspension springs in order for the natural frequencies of car body and bogie associated with vertical, pitch, roll and yaw motion to be within generally accepted range of 1-2 Hz. Equations for calculating magnetic force needed to climb up given slope are derived, and a magnetic caterpillar system for 1/6 scale monorail is designed based on the derivation. To assess the hill climbing ability and cornering stability, and make sure smooth operation of the side and vertical guiding wheels which is critical for safety, a multibody model that takes into account of every component level design characteristics of car, bogie, and caterpillar is set up. Through hill climbing simulation and comparison with measurement of the limit slope, the validity of the analysis and design of the magnetic caterpillar system are demonstrated. Also by studying the curving behavior, maximum curving speed without rollover, functioning of lateral motion constraint system, the effects of geometry of guiding rails are studied.

Shallow landslide susceptibility mapping using TRIGRS

  • Viet, Tran The;Lee, Giha;An, Hyun Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.214-214
    • /
    • 2015
  • Rainfall induced landslides is one of the most devastating natural disasters acting on mountainous areas. In Korea, landslide damage areas increase significantly from 1990s to 2000s due to the increase of both rainfall intensity and rainy days in addition with haphazard land development. This study was carried out based on the application of TRIGRS unsaturated (Transient Rainfall Infiltration and Grid-based Regional Slope stability analysis), a Fortran coded, physically based, and numerical model that can predict landslides for areas where are prone to shallow precipitation. Using TRIGRS combining with the geographic information system (GIS) framework, the landslide incident happened on 27th, July 2011 in Mt. Umyeon in Seoul was modeled. The predicted results which were raster maps showed values of the factors of safety on every pixel at different time steps show a strong agreement with to the observed actual landslide scars in both time and locations. Although some limitations of the program are still needed to be further improved, some soil data as well as landslide information are lack; TRIGRS is proved to be a powerful tool for shallow landslide susceptibility zonation especially in great areas where the input geotechnical and hydraulic data for simulation is not fully available.

  • PDF

Assessment of geological hazards in landslide risk using the analysis process method

  • Peixi Guo;Seyyed Behnam Beheshti;Maryam Shokravi;Amir Behshad
    • Steel and Composite Structures
    • /
    • v.47 no.4
    • /
    • pp.451-454
    • /
    • 2023
  • Landslides are one of the natural disasters that cause a lot of financial and human losses every year It will be all over the world. China, especially. The Mainland China can be divided into 12 zones, including 4 high susceptibility zones, 7 medium susceptibility zones and 1 low susceptibility zone, according to landslide proneness. Climate and physiography are always at risk of landslides. The purpose of this research is to prepare a landslide hazard map using the Hierarchical Analysis Process method. In the GIS environment, it is in a part of China watershed. In order to prepare a landslide hazard map, first with Field studies, a distribution map of landslides in the area and then a map of factors affecting landslides were prepared. In the next stage, the factors are prioritized using expert opinion and hierarchical analysis process and nine factors including height, slope, slope direction, geological units, land use, distance from Waterway, distance from the road, distance from the fault and rainfall map were selected as effective factors. Then Landslide risk zoning in the region was done using the hierarchical analysis process model. The results showed that the three factors of geological units, distance from the road and slope are the most important have had an effect on the occurrence of landslides in the region, while the two factors of fault and rainfall have the least effect The landslide occurred in the region.

Analysis of Response Characteristics According to Permanent Displacement in Seismic Slope (지진시 비탈면의 영구변위 발생에 따른 응답특성 분석)

  • Ahn, Jae-Kwang;Park, Sangki;Kim, Wooseok;Son, Su-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.12
    • /
    • pp.135-145
    • /
    • 2019
  • The slope collapse can be classified into internal and external factors. Internal factors are engineering factors inherent in the formation of slopes such as soil depth, slope angle, shear strength of soil, and external factors are external loading such as earthquakes. The external factor for earthquake can be expressed by various values such as peak ground acceleration (PGA), peak ground velocity (PGV), Arias coefficient (I), natural period (Tp), and spectral acceleration (SaT=1.0). Specially, PGA is the most typical value that defines the magnitude of the ground motion of an earthquake. However, it is not enough to consider the displacement in the slope which depends on the duration of the earthquake even if the vibration has the same peak ground acceleration. In this study, numerical analysis of two-dimensional plane strain conditions was performed on engineered block, and slope responses due to seismic motion of scaling PGA to 0.2 g various event scenarios was analyzed. As a result, the response of slope is different depending on the presence or absence of sliding block; it is shown that slope response depend on the seismic wave triggering sliding block than the input motion factors.

Run-off Impact Assessment of the Steeped Cornfield to Small Stream

  • Shin, Joung-Du;Lee, Jong-Sik;Kim, Won-Il;Jung, Goo-Bok;So, Kyu-Ho;Lee, Jung-Teak;Lee, Myong-Sun
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.4
    • /
    • pp.334-340
    • /
    • 2005
  • This experiment was conducted to evaluate the nutrient loss and to assess the eutrophication into small stream by intensive rains in the steeped cornfield during cultivation. The crop cultivated was a soiling com (DW5969), and the experimental plots were divided into two parts that were 10 and 18% of slope degrees. The amount of T-N and T-P loss was calculated by analysis of surface run-off water quality, and was investigated the effect of eutrophication to small stream as a part of life cycle assessment (LCA) methodology application. For the surface run-off water quality, EC and T-N values were highest in first runoff event as compared to the other events and maintained the stage state with litter variations at every hour during the runoff period except for EC in the slope 18%. However, T-P concentration has been a transient stage after runoff event of July 27. Total surface run-off ratio was not significantly different with slope degrees, but amount of T-N and T-P losses at 18% of slope were high as $5.96kg\;ha^{-1}\;and\;0.65kg\;ha^{-1}$ as relative to 10% of slope degree, respectively. Furthermore, T-N losses from run-off water in the sloped cornfield 10 and 18% were approximately 9.8 and 12.5% of the N applied as fertilizer when the fertilizer applied at recommended rates after soil test, respectively. For the eutrophication impact to the small stream, it was shown that $PO_4$ equivalence and Eco-indicator value at 18% of slope degree were greater as much $6.11kg\;ha^{-1}$ and 0.81 as compared to the slope angle 10%, respectively. Therefore, it was appeared that each effect of nutrient losses, eutrophication and Eco-indicator value was enhanced according with higher slope degree.

Slope Stability by Variation of Rainfall Characteristic for Long Period (장기간 강우특성 변화에 따른 국내 사면의 안정성)

  • Lee, Jeong-Ju;Kim, Jae-Hong;Hwang, Young-Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.6
    • /
    • pp.51-59
    • /
    • 2014
  • Shallow landslides and debris flows are a common form of soil slope instability in South Korea. These events may be generally initiated as a result of intense rainfall or lengthening rainfall duration because of the effects of climate change. This paper presents the evaluation of rainfall-induced natural soil slope stability and reinforced soil slope instability under vertical load (railway or highway load) throughout South Korea based on quantitative analysis obtained from 58 sites rainfall observatories for 38 years. The slope stability was performed for infinite and geogrid-reinforced soil slopes by taking an average of maximum rainfall every ten years from 1973 to 2010. Seepage analysis is carried out on unsaturated soil slope using the maximum rainfall at each site, and then the factor of safety was calculated by coupled analysis using saturated and unsaturated strength parameters. The contour map of South Korea shows four stages in 10-year-time for the degree of landslide hazard. The safety factor map based on long term observational data will help prevent rainfall-induced soil slope instability for appropriate design of geotechnical structures regarding disaster protection.

Salicylate-Selective Electrodes Based on Tripodal Tris-thiourea Derivatives

  • Lee, Chaeg-Yeong;Kim, Jung-Hwan;Kim, Dong-Wan;Lee, Shim-Sung;Kim, Jin-Eun;Kim, Jae-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2466-2470
    • /
    • 2007
  • A new highly salicylate-selective PVC membrane electrode based on tripodal tris-thiourea derivatives, L1 and L2, as neutral carriers is described. The electrodes display an excellent potentiometric response to salicylate ions and an anti-Hofmeister selectivity sequence in the following order: Salicylate? > ClO4 ? > Benzoate? > I? >NO3? > NO2? > Maleate? > Acetate? > Lactate? > Fumarate?. It also exhibited a near-Nernstian potential in a linear range of 5.0 × 10?5 - 1.0 × 10?1 M with a detection limit of 9.0 × 10?5 mol/L and a slope of ?59.9 mV/decade at a pH of 7.0 in a saline buffer solution at 25 oC. The stability constant (log KS) of the anionsionophore complex was also determined at 25 oC by a conductometric titration in DMSO solution.