• Title/Summary/Keyword: Natural seawater

Search Result 270, Processing Time 0.021 seconds

Formation Characteristics of Environment Friendly Electrodeposit Films Formed in Natural and Synthetic Seawater Conditions (천연 및 인공해수를 이용하여 제작한 환경친화적인 전착코팅막의 형성 특성)

  • 이명훈;이찬식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.1000-1009
    • /
    • 2004
  • The environment friendly calcareous deposit films were formed on steel plates by electrodeposition technique in natural seawater and synthetic solutions such as dissolved $\textrm{Mg}^{2+}$ and $\textrm{Ca}^{2+}$ ions at various potential conditions. The influence of potential conditions on composition ratio, structure and morphology of the electrodeposited films were investigated by scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray diffractor (XRD). Accordingly, this study was provided a better understanding of the composition between the growth of $\textrm{Mg(OH)}_2$ and that of $\textrm{CaCO}_3$ during the formation of calcareous deposit films on steel substrate under cathodically electrodeposition in synthetic and natural seawater. The results showed that the formation of good overall calcareous deposited film in seawater can be achieved by controlling the Ca/Mg ratio according to interfacial pH with the effective use of the electro deposition technique.

Electrochemical Corrosion Damage Characteristics of Alumium Alloy and Stainless Steel with Sea Water Concentration (알루미늄 합금 및 스테인리스강의 해수 농도 변화에 따른 전기화학적 부식 손상 특성)

  • Park, Il-Cho;Kim, Young-Bok;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.4
    • /
    • pp.259-265
    • /
    • 2017
  • 5000 series aluminium alloys and austenitic stainless steels have excellent corrosion resistance and sufficient strength, which are widely used as materials for marine equipment and their parts in the marine environment. The corrosion characteristics of materials are important factors for selecting the appropriate material due to fluid component changes in the estuarine and coastal areas where seawater and fresh water are mixed. Therefore, for 5083 Al alloy, STS304 and STS316L widely used in the marine environment, anodic polarization experiments were performed to compare the corrosion damage characteristics of each material by three kinds of solutions of 100 % tap water, 50 % tap water+50 % natural seawater and 100 % natural seawater. As a result of the anodic polarization experiments, aluminum alloy (5083) caused locally corrosion on the surface in the tap water, and corrosion damage occurred all over the surface when the seawater was included. Stainless steels (STS304 and STS316L) presented almost no corrosion damage in tap water, but they grew pitting corrosion damage with increasing seawater concentration. STS316L showed better corrosion resistance than STS304.

Properties Analysis of Environment Friendly Coating Films Formed by Using Electrodeposition Principle on Seawater (해수환경중 전착원리에 의해 형성시킨 환경친화적인 코팅막의 특성 분석)

  • Baek, S.M.;Lee, C.S.;Kim, K.J.;Moon, K.M.;Lee, M.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.196-197
    • /
    • 2005
  • Cathodic protection is one of the successful ways to prevent corrosion of steel structures in marine environments. The unique feature of cathodic protection in seawater is the formation of calcareous deposits on cathodic metal surface. The formation principles of calcareous deposit seawater had been known for a long time. That is, cathodic reduction reactions associated with cathodic protection in seawater generate $OH^-$ at the metal surface in accordance with the formular ; 1/2 $O_2$ + $H_2O$ + $2e^-$ $2OH^-$ and $2H_2O$ + $2e^-$ ${\rightarrow}$ $H_2$ + $2OH^-$. These reactions increase the pH at the metal / seawater interface. The high pH causes precipitation of $Mg(OH)_2$ and $CaCO_3$ in accordance with the formular ; $Mg^{2+}$ + $2(OH)^-$ ${\rightarrow}$ $Mg(OH)_2$ and $Ca^{2+}$ + $HCO_3^-$ + $OH^-$ ${\rightarrow}$ $H_2O$ + $CaCO_3$. These are typically the main compounds in calcareous deposits. It obviously has several advantages compared to the conventional coatings, since the environment-friendly calcareous deposit coating is formed by the elements($Mg^{2+}$, $Ca^{2+}$) naturally present in seawater. In this study, environmental friendly calcareous deposit films were prepared on steel plates by electro plating technic in natural seawater. The influence of current density on composition ratio, structure and morphology of the coated films were investigated by scanning electron microscopy formation process of calcareous deposits films in natural seawater. And we confirmed the properties of all the films can be improved greatly by controlling the material structure and morphology with effective use of the electroplating method in natural seawater.

  • PDF

Properties Analysis of Environment Friendly Electrodeposit Films Formed at Various Current Density Conditions in Natural Seawater (천연해수 중 전류밀도 변화에 따라 형성된 환경친화적인 전착 코팅막의 특성 분석)

  • Lee Chan-Sik;Bae Il-Yong;Kim Ki-Joon;Moon Kyung-Man;Lee Myeong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.5
    • /
    • pp.253-262
    • /
    • 2004
  • Calcareous deposits are the consequence of pH increase of the electrolyte adjacent to metal surface affected by cathodic current in seawater. It obviously has several advantages over conventional coatings, since the calcareous deposit coating is formed from coating (Mg$^{2+}$, $Ca^{2+}$) naturally existing in seawater. In consideration of this respect, environment friendly calcareous deposit films were formed by an electro deposition technique on steel substrates submerged in 48$^{\circ}C$ natural seawater. And the influence of current density, coating time and attachment of steel mesh on composition ratio, structure and morphology of the electrodeposited films were investigated by Scanning Electron Microscopy(SEM), Energy Dispersive Spectroscopy(EDS) and X-Ray Diffractor(XRD), respectively. Accordingly, this study provides a better understanding of the composition between the growth of $Mg(OH)_2$ and $CaCO_3$ during the formation of electro deposit films on steel substrate under cathodically electrodeposition in $48^{\circ}C$ natural seawater. The Mg compositions, in general, are getting decreased regardless of current density but Ca compositions are getting increased as electrodeposition time runs. That is, $Mg(OH)_2$ compounds of brucite structure shaped as flat type is formed at the initial stage of electrodeposition, but CaCO$_3$ compounds of aragonite structure shaped as flower type is formed in large scale. Besides, $Mg(OH)_2$ compounds were much formed at 5 A/$\m^2$ environment condition compared to the 3 A/$\m^2$ and 4 A/$\m^2$ environment conditions. This is because that OH- which was comparatively largely generated at the metal surface is preferably combined with $Mg^{2+}$TEX>.

A Test to Compare the Water Resistance Sun Protection Factor of General Water, Artificial Seawater, and Natural Seawater of Sunscreen (자외선 차단제의 일반 물, 인공 해수, 자연 해수의 내수성 차단지수를 비교하기 위한 시험)

  • Hyoung Hoon Hwang;Eun Young Kang;Su Yeong Kim;Hui Jeong Jung;Jun Seong Yang;Won Kyu Hong;Hong Suk Kim
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.4
    • /
    • pp.349-354
    • /
    • 2023
  • Sunscreen is a product that protects against ultraviolet rays by blocking and scattering ultraviolet rays, and has now become a daily necessity beyond cosmetics. Applying sunscreen is a common and easy way to prevent skin damage caused by ultraviolet rays. Due to its significance, the evaluation of sunscreen has evolved since its regulation by the FDA in 1978, progressing to standardized methods established by ISO. Additionally, to assess the loss of sunscreen due to activities such as water exposure or sweating, the Ministry of Food and Drug Safety in Korea and ISO have established protocols for evaluating the water-resistant sun protection factor (SPF). However, existing evaluations of water resistance have been mainly confined to test methods involving plain water, and methods accounting for the impact of seawater during activities like beach leisure, sports, and recreation are yet to be established. Based on the existing guidelines for testing the water-resistant UV protection index, this study compared the water-resistant UV protection index in water, artificial seawater (salt water) and natural seawater (sea water) to evaluate the UV protection index in real-world situations such as marine leisure, sports, and leisure activities. Through these results, we were able to compare the differences between water resistance sun protection index tests in ordinary water, artificial seawater, and natural seawater, and suggest a method for water resistance sun protection index tests using natural seawater.

Study on Methane Hydrate Formation in Seawater and Pure Water (해수와 순수물에서 메탄 하이드레이트 생성에 대한 연구)

  • Park, Sung-Seek;Kim, Nam-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.4
    • /
    • pp.34-40
    • /
    • 2009
  • $1m^3$ hydrate of pure methane can be decomposed to the maximum of $216m^3$ methane at standard condition. If these characteristics of hydrate are reversely utilized, natural gas is fixed into water in the form of hydrate solid. Therefore, the hydrate is considered to be a great way to transport and store natural gas in large quantity. Especially the transportation cost is known to be 18-24% less than the liquefied transportation. In the present investigation, experiments and theoretical calculation carried out for the formation of methane hydrate in NaCl 3.5wt% solution. The results show that the equilibrium pressure in seawater is more higher than that in pure water, and methane hydrate could be formed rapidly during pressurization if the subcooling is maintained at 9K or above in seawater and 8K or above in pure water, respectively. Also, amount of consumed gas volume in pure water is more higher that in seawater at the same experimental conditions. Therefore, it is found that NaCl acts as a inhibitor.

Analysis and Quantification of Seawater Infiltration by Wave Action in Coastal Zone (연안해역에서 파도에 의한 해수 침투이론의 비교와 정량화)

  • Cheong Cheong-jo;Choi Doo-hyoung;Kim Tae-keun;Okada Mitsumasa
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.4
    • /
    • pp.3-11
    • /
    • 2001
  • To know the seawater infiltration into tidal flat sediment in coastal area is very important, because it is significantly correlated with the infiltration and transportation of pollutants in soil, the supply of dissolved oxygen, nutrients and organic matter to benthic organisms for survival of benthic organisms and the seawater purification. So, we set up purpose to clarify the infiltration behavior of seawater by wave action in tidal flat, to clear the effects of slope of tidal flat and breaking wave height on seawater infiltration and to quantify the infiltration volume of seawater. For purpose, the seawater infiltration was studied with visualization method by using coloring tracer and transparent glass beads replaced as natural sediment in model tidal flat. Specific conclusions derived from this study are as follows. The semi-circular type infiltration of seawater by wave action into saturated sediment was a new infiltration behavior that was not considered in previous studies. The infiltration rate of seawater was increased with increasing of breaking wave height and slope of tidal flat. However, the effects of the slope was bigger than that of breaking wave height on seawater infiltration into tidal flat sediments. It was possible to calculate the infiltration volume of seawater by wave action in natural tidal flat sediment and in fields. Therefore, we can point out that wave action play an important role in the supply of dissolved oxygen, nutrients and organic matter to benthic organisms, transportation or diffusion of pollutants and seawater purification. So, we hope to be studied the supply of food to benthic organism, pollutant transport and seawater purification on the base of these results.

  • PDF

A Study on the Sea-water Purification Properties of Porous Concrete (포러스콘크리트의 해수정화특성에 관한 실험적 연구)

  • Seo, Dae-Seuk;Park, Seong-Bum;Lee, Jun;Song, Jae-Lib;Kim, Jung-Hee
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.649-652
    • /
    • 2006
  • This paper describe the performance of seawater purification, to which living organisms can adapt, and the physical properties of porous concrete with continuous void. Although conventional concrete has been regarded as a destroyer of nature, seawater and air can pass freely through concrete when it is made porous by forming continuous void. This not only enables plants to vegetables, but also makes it possible for microscopic animals and plants, including bacteria, to attach to and inhabit uneven surface as well as internal voids when the concrete is provided in a natural seawater area or seawater side area. As a result, porous concrete using recycled aggregate improved the performance of seawater purification. In this study, The performance of seawater purification of porous concrete using recycled aggregate analyzed by T-P, T-N.

  • PDF

Corrosion Behavior of Carbon Steel in Diluted Sulfuric Acid based on Seawater

  • Kim, Mun Su;Jeong, Jin-A
    • Corrosion Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.78-85
    • /
    • 2019
  • The International Maritime Organization (IMO) will administer a new 0.5% global sulfur cap on fuel content from 1 January 2020, lowering from the present 3.5% limit. Seawater $SO_x$ (sulfur oxide) scrubbing is especially spray scrubbing and a promising alternative to complying with the IMO regulation. However, the ionization of $SO_2$ (sulfur dioxide) and the $H_2SO_4$ (sulfuric acid) formed from $SO_3$ (sulfur trioxide) is proposed to accelerate corrosion of the internal seawater pipe. Apparently, the corrosion of the scrubber seawater piping system occurs in a severe and frequent manner. Hence, in this study, electrochemical measurement and weight loss of carbon steel (used as seawater pipe in most of the ships) in diluted sulfuric acid solution were investigated to determine corrosion rate, corrosion current density, corrosion potential, electrochemical behavior, and impressed-current density. Accordingly, the corrosion rate of carbon steel sheet in various diluted sulfuric acid solutions was observed to be greater than that in natural seawater, thus suggesting the fundamental data to deal with corrosion problems in scrubber seawater pipe.

Settling Characteristics of Natural Loess Particles in Seawater (해수 중에서 자연상태 황토입자의 침강특성)

  • KIM Sung-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.6
    • /
    • pp.706-712
    • /
    • 1999
  • PSD (particle size distribution) for 2,000 mg/$\ell$ natural loess in seawater showed normal distribution cure at 0 minute settling time, accompanying with very large particle distribution range with its mean particle diameter of 31.6 $\mu$m and coencient of variance of $72.6\%$, With elapsed time it showed that the PSD was rapidly changed from normal distribution cure to abnormal distribution curve, steepened the right-hand side of it and its coefficient of variance was getting increased because of rapid settling of large size particles, Cumulative weight distribution showed that 2,000 mg/$\ell$ natural loess in seawater was almost $100\%$ constituted of particles bigger than 20 $\mu$m in diameter. Ratio of $V_s/(D_{bm})^{1/2}$ for loess particles in seawater was increased with increase of particle size in geometrical progression. Almost all loess particles in seawater had Stokes settling velocity not less than 2,255 times of Brownian diffusion coefficient, There was almost to EDL (about 0.4 nm) around natural loess particles in seawater, Thus, there was always LVDW attractive force between loess particles approaching each other in seawater, and almost no EDL repulsive force. Loess particles were not always in the condition of easy floe formation. Concentration of natural loess in seawater increasing from 400 mg/$\ell$ to 10,000 mg/$\ell$, characteristics of the settling was changed from Type I settling (discrete settling) to Type II settling (flocculation settling). PVD (particle volume distribution) showed that natural loess particles in seawater were largely constituted of two types of particles, such as rapidly settling particles and suspended and dispersed particles for a long time. Amount of the latter was much less than that of the former.

  • PDF