• Title/Summary/Keyword: Natural sand

Search Result 670, Processing Time 0.025 seconds

Migration of fine granular materials into overlying layers using a modified large-scale triaxial system

  • Tan Manh Do;Jan Laue;Hans Mattsson;Qi Jia
    • Geomechanics and Engineering
    • /
    • v.37 no.4
    • /
    • pp.359-370
    • /
    • 2024
  • The primary goal of this study is to evaluate the migration of fine granular materials into overlying layers under cyclic loading using a modified large-scale triaxial system as a physical model test. Samples prepared for the modified large-scale triaxial system comprised a 60 mm thick gravel layer overlying a 120 mm thick subgrade layer, which could be either tailings or railway sand. A quantitative analysis of the migration of fine granular materials was based on the mass percentage and grain size of migrated materials collected in the gravel. In addition, the cyclic characteristics, i.e., accumulated axial strain and excess pore water pressure, were evaluated. As a result, the total migration rate of the railway sand sample was found to be small. However, the total migration rate of the sample containing tailings in the subgrade layer was much higher than that of the railway sand sample. In addition, the migration analysis revealed that finer tailings particles tended to be migrated into the upper gravel layer easier than coarser tailings particles under cyclic loading. This could be involved in significant increases in excess pore water pressure at the last cycles of the physical model test.

Decomposition of Monazite Sand (모나자이트의 분해)

  • Ha Young Gu
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.3
    • /
    • pp.136-140
    • /
    • 1979
  • The purpose of this investigation was to study the sulfuric acid digestion of monazite sand, and to prepare rare-earths-thorium containing material from the resulting solution which would be suitable for further preparation of thorium and rare earth elements by ion-exchange. Digestion of crude monazite sand was treated in $95{\%}C$ sulfuric acid for 2.0 hours at 150∼$250^{\circ}C$. The acid to sand weight ratio were 1 : 1.9∼2.8. Optimum condition was 95% sulfuric acid for 2.0 hours at $200{\pm}5^{\circ}C$. Within this conditions monazite sand was decomposed up to 99%.

  • PDF

Study on Algae and Turbidity Removal by Floating-media and Sand Filter (부상여재 및 모래 여과장치에 의한 조류와 탁도 제거에 관한 연구)

  • Kwon, Dae-Young;Kwon, Jae-Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.5
    • /
    • pp.659-668
    • /
    • 2012
  • In Korea, almost every water treatment plant suffers from seasonal problem of algae and turbidity which result from eutrophication and heavy rainfall. To relieve this problem, experimental investigation was performed to study the applicability of a floating-media and sand filter to preliminary water treatment in terms of algae and turbidity removal. Experimental results using pure-cultured algae influent showed that the shape of algae species as well as filtration velocity affects the removal efficiency. From the experiments using natural river water, it was concluded that algae removal is more sensitive to floating-media depth but turbidity more sensitive to sand depth. As the filtration velocity increased, the removal of turbidity decreased but that of algae was not affected. The floating-media and sand filter removed more than 30 % of TP, TN, turbidity, Chl-a and CODcr, and less than 20 % of DOC and $UV_{254}$.

Shear Strength of Intermediate Soils with Different Types of Fines and Sands

  • Kim, Ukgie;Ahn, Taebong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.1
    • /
    • pp.33-42
    • /
    • 2013
  • In this paper, a series of monotonic undrained shear tests were carried out on four kinds of sand-fine mixtures with various fines content. Two kinds of sands (Silica sand V3, V6) and fines (Iwakuni natural clay, Tottori silt) were mixed together in various proportions, while paying attention to the void ratio expressed in terms of sand structure $(F_c{\leq}F_{cth})$. The undrained shear strength of mixtures below the threshold fines content was observed so that as the plastic fines content increases, maximum deviator stress ratio decrease for dense samples while an increase is noted for loose samples. For non-plastic fines, the increase in the amount of fines leads to an increase in density of the soil, which results in an increase in strength. Then, the monotonic shear strength of the mixtures was estimated using the concept of granular void ratio. It was found that the shear strength of mixtures is greatly dependent on the skeleton structure of sand particles.

A Study on the Concentration Distribution Characteristics of Air Pollutants by Yellow Sand Phenomenon (황사현상에 의한 대기오염물질의 농도분포 특성에 관한 연구)

  • 이용기;김종찬;최승석;임홍빈;최양희;이수문
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.2
    • /
    • pp.71-78
    • /
    • 2002
  • This study was conducted to evaluate the concentration distribution characteristics of air pollutants by the yellow sand from China. The concentrations and chemical properties of FPM contained in the yellow sand were compared with those of air pollutants when having no yellow sand in order to estimate the variation characteristics and the originated source of air pollutants moved by yellow sand. The concentrations of PM-2.5 and PM-10 contained in the yellow sand showed an increase of 2.3 to 2.7 times than usual, and the concentrations of NO2 and SO2 in the gaseous pollutants showed an increase of about 1.6 times by yellow sand, and thus the air contamination was much influenced by yellow sand phenomenon. The concentrations of inorganic elements contained in FPM from the yellow sand showed a higher concentration variation in the order of Al>Mg>Zn>Pb than usual. The concentration coefficient of air aerosol during the yellow sand period showed that Na, K, Ca, Mg and Fe were originated from natural source, and Pb, Cr, Cd, Cu and Zn were originated from artificial source for inorganic elements. The correlation analysis between FPM and inorganic elements showed in the descending order of Al>K>Pb>Mg, and thus the deposited amount of Pb was influenced by that of yellow sand. The average concentrations of PM-10 measured during the yellow sand period exceeded the Korea Air Environmental Standard and showed a excess rate of 3.4 times in the maximum but the average concentrations of PM-2.5 showed within the United States Air Environmental Standard.

Spatial Distribution of Halophytes in the Goraebul Coastal Sand Dune, Korea (고래불 해안사구에서 염생식물의 공간분포)

  • Jeong, Min-Hyeong;Kim, Seok Cheol;Hong, Bo Ram;Lee, Kyu Song
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.3
    • /
    • pp.380-388
    • /
    • 2017
  • Factors affecting spatial distribution of halophytes were analyzed in June 2012 at the Goraebul coastal dunes. In the Goraebul sand dune, distribution of halophytes was divided into three groups. The first group belonging to Elymus mollis, Carex kobomugi, Calystegia soldanella, Ixeris repens and Glehnia littoralis was distributed in the ridge of primary sand dune and dune slack. The second group belonging to Lathyrus japonicus and Zoysia macrostachya was distributed in the dune slack. The third group belonging to Pinus thunbergii, Vitex rotundifolia and Linaria japonicus was distributed in the pine forest of the secondary sand dune. E. mollis, C. kobomugi, C. soldanella, I. repens and G. littoralis was distributed in relatively unstable habitat of sand dunes due to the large amount of sand movement. V. rotundifolia was distributed in a relatively stable habitat. Factors that have the greatest influence on distribution of halophytes in the Goraebul sand dunes are distance from the seashore, topography, and the pine forest. The Goraebul sand dune is a relatively well-preserved area with minimal human intervention. Therefore, different distribution of physico-chemical factors by natural processes is essential to spatial distribution of halophytes than other sand dunes in Korea. Significant natural processes in the Goraebul sand dunes were advance and retreat of coastlines from waves, erosion and sedimentation of sand due to wind and waves, and dispersal of seawater.

Chloride Diffusion in Mortars - Effect of the Use of Limestone Sand Part II: Immersion Test

  • Akrout, Khaoula;Ltifi, Mounir;Ouezdou, Mongi Ben
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.2
    • /
    • pp.109-112
    • /
    • 2010
  • Part I of this study was devoted to the electrical accelerated chloride diffusion in mortars. In this second part, natural chloride diffusion has been investigated for four types of mortars under exposure to a 0.5 mol/L NaCl solution for a period of up to 35 days. Two different types of sand were used for the production of test samples: siliceous sand (used as a reference) and limestone sand (used in this study). The effect of water to cement ratio and exposure time on the diffusion coefficients of mortars was also investigated. In this study, the total and free chloride content and penetration depth of mortar were measured after immersion, and Fick's second law of diffusion was fitted to the experimental data to determine the diffusion coefficient. Their results show that the use of crushed limestone sand in mortar had a positive effect on the chloride resistance. The apparent diffusion coefficient in all specimens was smaller than that in siliceous sand mortar. However, the chloride penetration of these mortars was increased as exposure time progressed.

A Study on the Fracture Characteristicsof Crushed Sand Concrete and River Sand Concrete (강모래 및 부순모래 콘크리트의 파괴특성에 관한 연구)

  • 김진근;이칠성
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.4
    • /
    • pp.129-136
    • /
    • 1995
  • Thls research Includes est~mat~ons of the relat~on ktween the strength of concrete and the fracture energy for river sand concrete and crushed sand concrete using the wedge sphtting test method. Furthermore the fracture energy and the characteristic length of two types of concrete were compared and d~scussed. Fracture behaviors of crushed sand concrete and natural sand concrete had the similar trend in fracture characteristics. The fracture energy was increased with the increase of compressive strength in the strength range of 20-60MPa, but was not increased for the concrete more than 6OM.Pa of compressive strength.

Trace Metals Characterization of Respirable Dust during Yellow Sand Phenomena in Seoul Area (서울지역의 황사발생시 호흡성 분진 중 미량원소의 특성 평가)

  • 신은상;선우영
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.1
    • /
    • pp.41-51
    • /
    • 2002
  • This research was carried out using Anderson air sampler which were set up on the roof of the Engineering College of Konkuk University at Hwayang-Dong, Kwangjin-Gu, Seoul from Aug. 1992 to foul. 1999. The results are as follows: The major component of yellow sand is soil particles based upon the observation that particles ranging from $3.3~7.0{\mu}m$ occupy 36~63%. It is certain that the increase of fine particles of respirable dust during yellow sand phenomenon in Seoul area affects the human body. The trace metals from natural sources like Al, Ca, Fe, K, Na, and Si show larger mass median diameter(MMD) values during yellow sand phenomenon than in normal situations while the values of MMD for Mn and Pb rarely changes. Noticeably, the changes in value of MMD of water soluble elements like ${NO_3}^{-}$ and ${SO_4}^{2}$ are 2.3 and 6.6 times higher during the yellow sand phenomenon compared to normal situations, respectively. This fact is regarded as decisive evidence showing that ${NO_3}^{-}$ and ${SO_4}^{2}$ in the air are attached to yellow sand and move together.

The Effects of Soil Surface Moisture Distribution in Perlite on Occurrence of Wild Plants (지표면의 수분분포가 야생초본류의 발생에 미치는 영향)

  • Bak, In-Young;Kim, Min-Soo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.1
    • /
    • pp.16-23
    • /
    • 2001
  • This study was conducted to analyse the relation between physical characteristics of soil surface and wild plants occurrence. Lots of natural occurrence on loamy soil and a little of natural occurrence on perlite. Those were used to observe the wild plants occurrence through the duration. Natural occurrence of wild plants were observed on uniform sand, perlite, loamy soil and 2cms loamy soil layer above the perlite. Uniform sand was compared with different height of drain ditch. The results of analysis were as followed. 1. Wild plants germinated on the uniform perlite layer, they did not grow larger. Because water in large pores of perlite surface drained rapidly and evaporated easily, therefore surface remained low moisture contents. 2. A lot of weed grew on 2cms loamy layer on perlite which stratified above the perlite layer. Because perlite had plenty of soil moisture and soil moisture moved easily from perlite to loamy soil layer. 3. Uniform loamy soil had similar occurrence on the uniform perlite. It was nearly same at surface moisture distribution but lower than layered loamy soil on perlite, and the vertical distributions at soil moisture was totally lower than 2cms loamy soil layer on perlite. 4. Wild plants were grew on uniform sand on different height of drain ditch. In this case, much more wild plants were grew on which had more higher drainage ditch. The number of wild plants occurred when it was affected by soil surface moisture, drain ditch and natural occurrence of wild plants. This could be controlled by layered soil at surface moisture. Therefore weed occurrence can control in planting ground, where soil layer would not be disturbed.

  • PDF