• Title/Summary/Keyword: Natural refrigerant

Search Result 100, Processing Time 0.025 seconds

The Study on Performance Characteristics of $NH_3$ and R22 due to Structure of Heat Exchanger (열교환기 구조 변화에 따른 $NH_3$와 R22의 성능특성연구)

  • Ha Ok-Nam;Ha Kyung-Soo;Lee Seung-Jae;Jeong Song-Tae
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.60-65
    • /
    • 2005
  • Nowadays HCFCs refrigerant are restricted because it cause depletion of ozone layer. However, natural gases such as ammonia as an organic compound, propane and propylene as hydrocarbon are easy and cheap to obtain as well as environmental. Accordingly, this experiment apply the $NH_3$ and R22 to study the performance characteristic from the superheat control and compare the energy efficiency of two refrigerants from the high performance. The condensing pressure of refrigeration system is increased from 15bar to 16bar and degree of superheat is increased from 0 to $10^{\circ}C$ at each condensing pressure. As the result of experiment, when comparing the each COP, we knew the $NH_3$ is suitable as the alternative refrigerant of the R22.

  • PDF

Performance Simulation of a R744 Refrigeration System in a Refrigerator Truck under a Frost Condition (착상조건에서 R744 냉매 적용 탑차용 냉장시스템의 성능해석)

  • Kim, Sang Hun;Myoung, Chi Wook;Cho, Hong Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.9
    • /
    • pp.499-505
    • /
    • 2013
  • R744 has been appropriated for substitute refrigerant, because of its high stability, and environment-friendly nature as a natural refrigerant. To analyze the cooling performance of a refrigeration system in a refrigerator truck using R744 according to the blocking ratio, an analytical model of the refrigeration system was developed under frost conditions, using EES. The performance of the refrigeration system was predicted with the indoor and outdoor air temperature, outdoor air velocity, and compressor speed. As a result, the system performance decreased, with the increase of frost growth. When the blocking ratio was 40.4% in the basic condition, the refrigeration capacity was decreased by 27.1%, compared to the non-frost condition.

Investigation on Efficiency Improvement of the Nitrogen Expander Cycle : Natural Gas Liquefaction Process for LNG-FPSO (LNG-FPSO(Liquefied Natural Gas-Floating Production Storage and Offloading)용 질소 팽창 사이클의 효율 개선에 대한 연구)

  • Baek, Seung-Whan;Jeong, Sang-Kwon;Kim, Sun-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.7
    • /
    • pp.442-447
    • /
    • 2010
  • FPSO (Floating Production Strorage and Offloading) method for LNG industry is efficient and facile compared to onshore NG (Natural Gas) treatment facility. Five simple natural gas liquefaction cycles for FPSO are presented and simulated in this paper. SMR (Single Mixed Refrigerant) cycle, SNE (Single Nitrogen Expander) cycle, DNE (Double Nitrogen Expander) cycle, PNE (Precooled Nitrogen Expander) cycle, and PDNE (Precooled Double Nitrogen Expander) cycle are compared. Simple analysis results in this paper show that precooling process and adding an expander in the liquefaction cycle is an effective way to increase liquefaction efficiency.

Experimental Study on Compression/Absorption High-Temperature Hybrid Heat Pump with Natural Refrigerant Mixture (천연혼합냉매를 이용한 압축/흡수식 고온히트펌프의 실험적 연구)

  • Kim, Ji-Young;Park, Seong-Ryong;Baik, Young-Jin;Chang, Ki-Chang;Ra, Ho-Sang;Kim, Min-Sung;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1367-1373
    • /
    • 2011
  • This research concerns the development of a compression/absorption high-temperature hybrid heat pump that uses a natural refrigerant mixture. Heat pumps based on the compression/absorption cycle offer various advantages over conventional heat pumps based on the vapor compression cycle, such as large temperature glide, temperature lift, flexible operating range, and capacity control. In this study, a lab-scale prototype hybrid heat pump was constructed with a two-stage compressor, absorber, desorber, desuperheater, solution heat exchanger, solution pump, liquid/vapor separator, and rectifier as the main components. The hybrid heat pump system operated at 10-kW-class heating capacity producing hot water whose temperature was more than $90^{\circ}C$ when the heat source and sink temperatures were $50^{\circ}C$. Experiments with various $NH_3/H_2O$ mass fractions and compressor/pump circulation ratios were performed on the system. From the study, the system performance was optimized at a specific $NH_3$ concentration.

An Experimental Study on Heat Transfer and Pressure Drop Characteristics of Carbon Dioxide During Gas Cooling Process in a Hellically Coiled Tube

  • Oh, Hoo-Kyu;Son, Chang-Hyo;Yu, Tae-Geun;Kim, Dae-Hui
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.263-271
    • /
    • 2007
  • The heat transfer coefficient and pressure drop during 9as cooling process of $CO_2$ (R744) in a helically coiled copper tube with the inner diameter of 4.55 mm and outer diameter of 6.35 mm were investigated experimentally. The main components of the refrigerant loop are a receiver, a variable-speed pump. a mass flow meter a pre-heater and a helically coiled type gas cooler (test section). The refrigerant mass fluxes are varied from 200 to $800kg/m^2s$ and the inlet pressures of gas cooler are 7.5 to 10.0 MPa. The heat transfer coefficients of $CO_2$ in a helically coiled tube are higher than those in a horizontal tube. The Pressure drop of $CO_2$ in the gas cooler shows a relatively good agreement with those predicted by Ito's correlation developed for single-phase in a helically coiled tube. The local heat transfer coefficient of $CO_2$ agrees well with the correlation by Pitla et al. However. at the region near pseudo-critical temperature. the experiments indicate higher values than the Pitla et al correlation. Therefore, various experiments in helically coiled tubes have to be conducted and it is necessary to develop the reliable and accurate prediction determining the heat transfer and pressure drop of $CO_2$ in a helically coiled tube.

Evaporation Heat Transfer of Carbon Dioxide in a horizontal Round Tube (수평원관내 $CO_2$의 증발열전달)

  • Kyoung, Nam-Soo;Jang, Seung-Il;Choi, Sun-Muk;Son, Chang-Hyo;Oh, Hoo-Kyu
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.262-267
    • /
    • 2005
  • The evaporation heat transfer coefficient of $CO_2$ in a horizontal round tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and evaporator(test section). The test section was made of a horizontal stainless steel tube with the inner diameter of 7.75 mm, and length of 5 m. The experiments were conducted at mass flux of 200 to 500 $kg/m^2s$, saturation temperature of $-5^{\circ}C$ to $5^{\circ}C$, and heat flux of 10 to 40 $kW/m^2$. The test results showed the evaporation heat transfer of $CO_2$ has great effect on more nucleate boiling than convective boiling. The evaporation heat transfer coefficients of $CO_2$ are highly dependent on the vapor quality, heat flux and saturation temperature. In comparison with teat results and existing correlations, correlations failed to predict the evaporation heat transfer coefficient of $CO_2$, therefore, it is necessary to develop reliable and accurate predictions determining the evaporation heat transfer coefficient of $CO_2$ in a horizontal tube.

  • PDF

Experimental study on the production of spherical ice particles using water as refrigerant (물을 냉매로 하는 구형 얼음입자 제조에 관한 실험적 연구)

  • 신흥태;김민형;이윤표;최영돈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.4
    • /
    • pp.475-482
    • /
    • 1998
  • In this paper, an experimental study was conducted to investigate the performance of the spherical ice particle production system which uses the technology of water spray in a vacuum chamber for increasing the heat transfer area. As a result, following conclusions were obtained. The diffusion-controlled evaporation model agreed relatively well with experiments. The spray flow rate influences the performance of the system rather than any other factors, for example, the spray nozzle position, the nozzle number. As the spray rate increases, the system efficiency increases. It is due to the entrainment of small droplets among the spray with the exhausted vapor. Thus the system should be designed and operated to prevent the entrainment. Assuming the compressor efficiency to be 70%, the COP of the system reaches highly up to 6 at a maximum spray rate. Under the conditions, however, the rigid ice layer is obtained because ice particles bond together with increase of the spray rate. Therefore, the spray rate should be controlled properly to make the spherical ice particles.

  • PDF

An Experimental Study on the Characteristics of Evaporative Heat Transfer of Carbon Dioxide (이산화탄소의 증발열전달 특성에 관한 실험적 연구)

  • 조은석;윤석호;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.1
    • /
    • pp.38-45
    • /
    • 2002
  • Evaporative heat transfer characteristics of carbon dioxide have been investi- gated by experiment. The experiments have been carried out for a seamless stainless steel tube of the outer diameter of 9.55 mm, the inner diameter of 7.75 mm and the length of 5.0 m. Direct heating method was used for supplying heat to the refrigerant where the test tube was uniformly heated by electric current which was applied to the tube wall. Experiments were conducted with$CO_2$of purity 99.99% at saturation temperatures of 0.0 to 10.5$^{\circ}C$, heat fluxes of 12 to 27kW/$m^2$s and mass fluxes of 212 to 530 kg/$m^2$s. The heat transfer coefficients of $CO_2$are decreased as the vapor quality increases and these phenomena are explained by dimensionless Weber and Bond numbers. The heat transfer coefficients of$CO_2$increase when the heat and mass fluxes increase, and the saturation temperature effects are minor in the test range of this study. The present experimental data are compared with six renowned correlations with root-mean-squared deviations ranging from 23.0 to 94.9% respectively.