• Title/Summary/Keyword: Natural organic carbon

Search Result 273, Processing Time 0.023 seconds

The Origin and Biogeochemistry of Organic Matter in Surface Sediments of Lake Shihwa and Lake Hwaong

  • Won, Eun-Ji;Cho, Hyen-Goo;Shin, Kyung-Hoon
    • Ocean Science Journal
    • /
    • v.42 no.4
    • /
    • pp.223-230
    • /
    • 2007
  • To understand the origin and biogeochemistry of the organic matter in surface sediments of Lake Shihwa and Lake Hwaong, organic nitrogen, inorganic nitrogen, labile organic carbon, and residual organic carbon contents as well as stable isotope ratios for carbon and nitrogen were determined by KOBr-KOH treatment. Ratios of organic carbon to organic nitrogen $(C_{org}/N_{org})$ (mean = 24) were much higher than ratios of organic carbon to total nitrogen $(C_{org}/N_{tot})$ (mean= 12), indicating the presence of significant amounts of inorganic nitrogen in the surface sediments of both lakes. Stable isotope ratios for organic nitrogen were, on average, $5.2\%_{\circ}$ heavier than ratios of inorganic nitrogen in Lake Shihwa, but those same ratios were comparable in Lake Hwaong. This might be due to differences in the origin or the degree of degradation of sedimentary organic matter between the two lakes. In addition, stable isotope ratios for labile organic carbon were, on average, $1.4\%_{\circ}$ heavier than those for residual organic carbon, reflecting the preferential oxidation of $^{13}C$-enriched organic matter. The present study demonstrates that KOBr-KOH treatment of sedimentary organic matter can provide valuable information for understanding the origin and degradation state of organic matter in marine and brackish sediments. This also suggests that the ratio of $(C_{org}/N_{org})$ and stable isotope ratios for organic nitrogen can be used as indexes of the degree of degradation of organic matter.

Evaluation of Pretreatment Processes for Dissolved Organic Carbon Removal in a Desalination Process (해수담수화에서 용존유기물을 제거하기 위한 전처리 공정의 평가)

  • Kim, Woo-Hang;Mitsumasa, Okada
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.447-451
    • /
    • 2004
  • The various pretreatment processes were evaluated to remove organic pollutants of weathered oil contaminated seawater(WOCS) for reverse osmosis desalination process, Biodegradation, coagulation, ultrafiltration, advanced oxidation processes and granular activated carbon filtration were used to evaluate the potential of organic pollutants removal in WOCS. Dissolved Organic Carbon(DOC) was almost not removed by biodegradation in WOCS. DOC was removed by 25% and 10% with the addition of $FeCl_3$ and PAC in WOCS, respectively. The removal efficiency using ultrafiltration(WOCS 500) was about 20% of DOC and 40% of $E_{260}$, respectively. In AOP application of WOCS, the removal of organic materials was improved up to 60% by the combination of $UV/O_3$ compared to UV process. However, 98% of DOC in woes could be removed by granular activated carbon filtration. It is revealed that activated carbon filtration is the best process for the pretratment of DOC removal.

Upgrading the Measurement Method of Biodegradable Dissolved Organic Carbon in Natural Water or Drinking Water (자연수 및 먹는 물 중의 생물학적 분해가능한 용존유기탄소의 측정방법 개선에 관한 연구)

  • 이윤진;윤재섭;박준석;남상호
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.3
    • /
    • pp.34-41
    • /
    • 2001
  • It is well known that bioassay on the low organic matters in water have developed from the two methods. One is assimilable organic carbon(AOC) that makes use of the maximum growth biomass of the pure strains for the standard substrates, the other is biodegradable dissolved organic carbon(BDOC) that determines the fraction of dissolved organic carbon(DOC) available for microbial utilization. The purpose of this study was to upgrade the measurement method of BDOC in natural water or drinking water. BBOC was determined by means of the bacterial growth and the DOC decrease at the same time. The origin inoculums were used to the suspended bacteria from Han River water, The initial optimum biomass and incubation time for initial DOC were induced by variation of nutrient repression and inoculums. The time reached to minimum DOC was selected as incubation time. The initial optimum biomass for Han river water was about 1000~5000 CFU/mL, respectively. In a sufficient biomass, suitable incubation time was about 3~5 day. It was indirectly calculated BDOC on maximum growth rate by measuring growth yield of indigenous bacteria. But it was difficult to adapt growth yield coefficient because of irregular bacterial growth. The measured 3 day BDOC was close to BDOC calculated with our proposed experimental equation between DOC and BDOC. It shows that the quantification of BDOC with this experimental equation can be used indirectly.

  • PDF

Estimation of carbon sequestration in natural forests - A Geospatial Approach - (자연 삼림의 탄소 분리 추정에 관한 연구)

  • Ramachandran, Ramachandran;Jayakumar, S.;Heo, Joon;Kim, Woo-Sun
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.359-362
    • /
    • 2007
  • Estimation of carbon in the natural forest regions is a pre-requisite for carbon management. In the light of increasing carbon dioxide concentration in the atmosphere, the amount of carbon present in the plants and soils are very much needed to estimate the sequestered carbons stock of any region. Carbon stock estimation studies are limited in India, especially in the natural forest regions of Eastern ghats of Tamil Nadu. Remote sensing, Geographical Information System (GIS) and global positioning system (GPS) were used along with extensive field and laboratory works to estimate the carbon stock in the living biomass and soil. About five forest types were identified and mapped using satellite data. The total biomass carbon including above and below ground were 2.74 Tg and the total soil organic carbon was 3.48 Tg. This study has yielded significant information about the carbon stock in a natural forest region and it could be used for future comparative studies.

  • PDF

Removal of Natural Organic Matter (NOM) by Carbon Nanotubes Modified PVDF Membrane (탄소나노튜브(CNT)-PVDF 막을 이용한 자연용존유기물 제거)

  • Cho, Hyun-Hee;Cha, Min-Whan;Park, Jae-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.148-156
    • /
    • 2012
  • In this research, the application of carbon nanotubes (CNTs) modified PVDF (polyvinylidene fluoride) membrane was tested as a simply and beginning attempt to overcome membrane fouling because CNTs importantly affect the transport of natural organic matter (NOM). Suwannee River fulvic acid (SRFA) as the representative of NOM was selected and its sorption results with single-walled CNT (SWCNT), multi-walled CNT (MWCNT), and oxidized MWCNT (O-MWCNT) were obtained through the batch experiment. SRFA sorption isotherms had a strong nonlinearity and its sorption capacity followed the order O-MWCNT < MWCNT < SWCNT. The adsorbed mass of SRFA on each CNT decreased as a function of pH due to their charge repulsion. For the CNT-PVDF membrane filtration experiments, the suspended CNT solution (10 mg/40 mL) was incorporated into $0.45{\mu}m$-PVDF membrane and 5 mg/L of SRFA solution was monitored using UV detector connected with high pressure pump after passing through CNT-PVDF membrane. The SRFA removal efficiency by MWCNT-PVDF membrane was the strongest among other modified membranes. This suggests that the CNT modified microfiltration (MF) membrane might effectively and selectively apply to treat the contaminated water including organic compounds in the presence of NOM.

Utilization of Industrial Waste to Organic Fertilizer for Lawn (산업폐기물의 잔디용 유기질 비료화에 관한 연구)

  • 주영규
    • Asian Journal of Turfgrass Science
    • /
    • v.5 no.2
    • /
    • pp.81-86
    • /
    • 1991
  • The sludge, a waste of brewery industries, was examined for potentials as a natural organic fertilizer (or soil conditioner) for lawn. Trial products were measured for changes of physical, chemical properties in laboratory and seed germination and seedling growth in green house were also tested. The results are as the following:1The sludge from distilled liquor brewery contained high quantity of organic matter which had proper physical and chemical properties for lawn fertilizer (natural organic fertilizer, soil conditioner, top-dressing mix) . It showed good characteristics in handling and capabilities to be developed as commercial products for golf courses. 2.Sludge from beer company needs proper treatment to improve physical properties for futher degradiation. It is because aggregation of the sludge particles prevented microbial activities and changing to soluble form. 3.Green carbon can be used as carbon source for organic fertilizer production using brewery sludge, but it should not contain wood extract which inhibit seed germination and seedling growth.

  • PDF

Analysis of Optical Properties of Organic Carbon for Real-time Monitoring (유기탄소 실시간 모니터링을 위한 분광학적 특성인자 분석)

  • You, Youngmin;Park, Jongkwan;Lee, Byungjoon;Lee, Sungyun
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.5
    • /
    • pp.344-354
    • /
    • 2021
  • Optical methods such as UV and fluorescence spectrophotometers can be applied not only in the qualitative analysis of dissolved organic matter (DOM), but also in real-time quantitative DOM monitoring for wastewater and natural water. In this study, we measure the UV254 and fluorescence excitation emission spectra for a sewage treatment plant influent and effluent, and river water before and after sewage effluent flows into the river to examine the composition and origin of DOM. In addition, a correlation analysis between quantified DOM characteristics and dissolved organic carbon (DOC) was conducted. Based on the fluorescence excitation emission spectra analysis, it was confirmed that the protein-type tryptophan-like DOM was the dominant substance in the influent, and that the organic matter exhibited relatively more humic properties after biological treatment. However, DOM in river water showed the fluorescence characteristics of terrestrial humic-like and algal tyrosine-like (protein-like) organic matter. In addition, a correlation analysis was conducted between the DOC and optical indices such as UV254, the fluorescence intensity of protein-like and humic-like organic matter, then DOC prediction models were suggested for wastewater and river monitoring during non-rainfall and rainfall events. This study provides basic information that can improve the understanding of the contribution of DOC concentration by DOM components, and can be used for organic carbon concentration management in wastewater and natural water.

Mesoporous Carbon as a Metal-Free Catalyst for the Reduction of Nitroaromatics with Hydrazine Hydrate

  • Wang, Hui-Chun;Li, Bao-Lin;Zheng, Yan-Jun;Wang, Wen-Ying
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2961-2965
    • /
    • 2012
  • Mesoporous carbons with tailored pore size were prepared by using sucrose as the carbon source and silicas as the templates. The silica templates were obtained from a hydroxypropyl-${\beta}$-cyclodextrin-silica hybrids using ammonium perchlorate oxidation at different temperatures to remove the organic matter. The structures and surface chemistry properties of these carbon materials were characterized by $N_2$ adsorption, TEM, SEM and FTIR measurements. The catalytic performances of these carbon materials were investigated through the reduction of nitroaromatic using hydrazine hydrate as the reducing agent. Compared with other carbon materials, such as active carbon, and carbon materials from the silica templates obtained by using calcination to remove the organic matter, these carbon materials exhibited much higher catalytic activity, no obvious deactivation was observed after recycling the catalyst four times. Higher surface area and pore volume, and the presence of abundant surface oxygen-containing functional groups, which originate from the special preparation process of carbon material, are likely responsible for the high catalytic property of these mesoporous carbon materials.

Organic Carbon Cycling in Ulleung Basin Sediments, East Sea (동해 울릉분지 퇴적물에서 유기탄소 순환)

  • Lee, Tae-Hee;Kim, Dong-Seon;Khim, Boo-Keun;Choi, Dong-Lim
    • Ocean and Polar Research
    • /
    • v.32 no.2
    • /
    • pp.145-156
    • /
    • 2010
  • This study investigated organic carbon fluxes in Ulleung Basin sediments, East Sea based on a chamber experiment and geochemical analyses. At depths greater than 2,000 m, Ulleung Basin sediments have high organic carbon contents (over 2.0%). Apparent sedimentation rates (ASR) calculated from excess $^{210}Pb$ activity distribution, varied from 0.036 to $0.047\;cm\;yr^{-1}$. The mass accumulation rates (MAR) calculated from porosity, grain density (GD), and ASR, ranged from 131 to $184\;g\;m^{-2}\;yr^{-1}$. These results were in agreement with sediment trap results obtained at a water depth of 2100 m. Input fluxes of organic carbon varied from 7.89 to $11.08\;gC\;m^{-2}\;yr^{-1}$ at the basin sediments, with an average of $9.56\;gC\;m^{-2}\;yr^{-1}$. Below a sediment depth of 15cm, burial fluxes of organic carbon ranged from 2.02 to $3.10\;gC\;m^{-2}\;yr^{-1}$. Within the basin sediments, regenerated fluxes of organic carbon estimated with oxygen consumption rate, varied from 6.22 to $6.90\;gC\;m^{-2}\;yr^{-1}$. However, the regenerated fluxes of organic carbon calculated by subtracting burial flux from input flux, varied from 5.87 to $7.98\;gC\;m^{-2}\;yr^{-1}$. Respectively, the proportions of the input flux, regenerated flux, and burial flux to the primary production ($233.6\;gC\;m^{-2}\;yr^{-1}$) in the Ulleung Basin were about 4.1%, 3.0%, and 1.1%. These proportions were extraordinarily higher than the average of world open ocean. Based upon these results, the Ulleung Basin might play an integral role in the deposition and removal of organic carbon.

Comparison of Soil Characteristics and Carbon Storage between Urban and Natural Lands - Case of Chunchon - (도심지와 자연지간 토양 특성 및 탄소저장량 비교 - 춘천시를 대상으로 -)

  • Jo, Hyun-Kil;Han, Gab-Soo
    • Journal of Forest and Environmental Science
    • /
    • v.15 no.1
    • /
    • pp.71-76
    • /
    • 1999
  • This study compared soil characteristics and carbon storage between urban and natural lands in Chunchon. Soil pH was lower in natural lands (5.0) than in urban lands (6.6), and therefore exchangeable cation was a little lower in natural lands. Organic matter and cation exchange capacity were respectively, 1.4 and 1.7 times higher in natural lands than in urban lands, while available $P_2O_5$ was about 3.2 times higher in urban lands. Organic carbon storage in soils averaged $24.8{\pm}1.6$ (standard error) t/ha in urban lands and $31.6{\pm}1.6t/ha$ in natural lands, 1.3 times greater than in urban lands. Annual carbon accumulation in soils of natural lands was 1.3 t/ha/yr (litterfall minus decomposition). The carbon storage in Chunchon' s soils equaled about 31% of annual carbon emission (245,590 t/yr).

  • PDF