• Title/Summary/Keyword: Natural organic carbon

Search Result 273, Processing Time 0.034 seconds

Textural, Isotopic, and Chemical Investigation of Cultured Pearls (양식진주의 조직적, 동위원소적 및 화학적 연구)

  • Woo, Kyung Sik
    • 한국해양학회지
    • /
    • v.24 no.2
    • /
    • pp.69-78
    • /
    • 1989
  • Cultivated pearls, composed of aragonite crystals, show two distinctive layers: nacreous and conchiolin organic layers. Each aragonite crystal is surrounded by organic matrix, which probably consists of amino acids. Nucleus, surrounded by pearl layer, also consists of nacreous crystals, suggesting that there is a close mineralogical and ultrasturctural relationship between pearl and nucleus. Carbon isotopic values of cultivated pearls are within the range of marine carbonate carbon. Oxygen isotopic composition indicates that the temperature for the growth of pearl and pearl oyster ranges from 16.4 to $21.4^{\circ}C$ and from 15.5 to $24.8^{\circ}C$, corresponding to the summer temperature range of the cultivating area. Elemental composition of pearl, pearl oyster, and nucleus shows that there is a difference in chemical composition depending upon the original mineralogy and the chemical composition of water in which shells grow. Especially, a strong relationship exists between pearl and the inner layer of pearl oyster because both are composed of nacreous aragonite and formed in a shallow marine environment.

  • PDF

Assessment of Physicochemical Properties of Domestic Bentonite and Zeolite as Candidate Materials for a Engineered Barrier in a Radwaste Repository (방사성폐기물 처분장 공학방벽 재료로서의 국산 벤토나이트 및 제올라이트에 대한 물리화학적 특성 평가)

  • 정찬호
    • The Journal of Engineering Geology
    • /
    • v.9 no.2
    • /
    • pp.89-100
    • /
    • 1999
  • This study was carried out to assess the physicochemical properties of domestic bentonites and zeolites from Tertiary Formation as the candidate material for a engineered barrier of a radioactive waste repository. Natural bentonite and zeolite samples were collected from nine bentonite mines and six zeolite mines in Yeonil-Gampo area. The commercial products of bentonite and zeolite were obtained from local companies. The collected samples were investigated to study the following physicochemical properties: X-ray diffraction patterns, swelling, cation exchange capacity(CEC), specific surface area, montmorillonite content, pH, organic carbon content, thermal property, microstruciure and chemical composition. Based on the physicochemical properties of bentonite and zeolite, the bentonites from U-41 and G-46 mines and the zeolites from Daedo and Y-1 mines are regarded as the most desirable candidate materials.

  • PDF

Comparative In Vitro Biological Toxicity of Four Kinds of Air Pollution Particles

  • Shin, Han-Jae;Cho, Hyun Gi;Park, Chang Kyun;Park, Ki Hong;Lim, Heung Bin
    • Toxicological Research
    • /
    • v.33 no.4
    • /
    • pp.305-313
    • /
    • 2017
  • Accumulating epidemiological evidence indicates that exposure to fine air pollution particles (APPs) is associated with a variety of adverse health effects. However, the exact physiochemical properties and biological toxicities of fine APPs are still not well characterized. We collected four types of fine particle (FP) (diesel exhaust particles [DEPs], natural organic combustion [NOC] ash, synthetic organic combustion [SOC] ash, and yellow sand dust [YSD]) and investigated their physicochemical properties and in vitro biological toxicity. DEPs were almost entirely composed of ultrafine particles (UFPs), while the NOC, SOC, and YSD particles were a mixture of UFPs and FPs. The main elements in the DEPs, NOC ash, SOC ash, and YSD were black carbon, silicon, black carbon, and silicon, respectively. DEPs exhibited dose-dependent mutagenicity even at a low dose in Salmonella typhimurium TA 98 and 100 strains in an Ames test for genotoxicity. However, NOC, SOC, and YSD particles did not show any mutagenicity at high doses. The neutral red uptake assay to test cell viability revealed that DEPs showed dose-dependent potent cytotoxicity even at a low concentration. The toxicity of DEPs was relatively higher than that of NOC, SOC, and YSD particles. Therefore, these results indicate that among the four FPs, DEPs showed the highest in vitro biological toxicity. Additional comprehensive research studies such as chemical analysis and in vivo acute and chronic inhalation toxicity tests are necessary to determine and clarify the effects of this air contaminant on human health.

A Study on Remediation Method of Diesel-Contaminated Railroad Soil using $TiO_2$-MMT ($TiO_2$-MMT를 이용한 디젤오염 철도토양의 개선방안에 관한 연구)

  • Yang, Young-Min;Huh, Hyun-Sue;Lee, Jae-Young;Lee, Cheul-Kyu;Jeon, Yu-Mi
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2870-2874
    • /
    • 2011
  • Soil pollution around railroad has been occurred mainly by diesel and lubricant oil, which is difficult to treat due to high carbon number. In this study, we investigated the feasibility of inorganic-inorganic nanohybrid photo-catalyst for the remediation of diesel-contaminated railroad soil. Generally, the $TiO_2$ nanoparticle easily removes organic pollutants due to photo and natural clay of layer structure. Also, montmorillonite (MMT) have an excellent absorption property with organic component. So, we prepared $TiO_2$ pillared MMT nanohybrid photo-catalyst as a chemical oxidant through the integration of theses advantage. As a result, the removal efficiency of diesel was more than 45% at a laboratory-scale test with diesel concentration and the amount of $TiO_2$-MMT. In future, we will improve the removal efficiency of diesel to optimize experimental parameters and apply the field soil The remediation method using photo-catalyst can be used to clean up the railroad soil polluted with high concentration instead of common methods such as soil washing, bioremediation, etc..

  • PDF

A Pilot Study for Introducing Advanced Water Treatment Facilities at Nakdong River (낙동강수계 고도정수시설 도입을 위한 PILOT 실험 연구)

  • Oh, Se-Won;Choi, Kwong-Ho;Choi, Soo-Il;Son, Seong-Sup
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.1
    • /
    • pp.88-98
    • /
    • 1997
  • To obtain design and operating parameters for advanced water facilities, pilot test consisted of ozonation and GAC filtration was conducted at midstream of Nakdong River. Even though the concentrations were very low, 62 chemicals were detected above $0.005{\mu}g/L$ in raw water. In the preozonation, natural organic matters which could produce THMs and organics such as phenols and amines were effectively removed. The performance of TOC removal of GAC filtration with ozonation was better than GAC filtration alone and adsorption capacity of GAC adsorbers were ranged 3~6mg-TOC/g-carbon. And also the life of GAC adsorber for removing TOC was predicted more than 1 years if ozonation is introduced. This indicates that biological degradation of organics happened in GAC filters. Most organics detected at ppt level were removed below detection limit by GAC filtration with ozonation. These results show that ozonation and GAC filtration are the reliable and safe process for organic contaminants and chlorinated byproducts control at Nakdong River.

  • PDF

Evaluation of Affecting Factors for Refractory Organics Accumulated in the Lakes (호소의 난분해 물질 축적 영향요인의 평가)

  • Kim, Sungwon;Kim, Geonha;Choi, Euiso
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.720-726
    • /
    • 2006
  • Long-term monitoring results of water qualities at major lakes in Korea showed COD (chemical oxygen demand) concentrations have been increasing while BOD (biochemical oxygen demand) concentrations have been decreasing during last decades. This was mainly due to refractory organic matters have been accumulated in the water body. In this study, the possible causes of COD concentration increase were evaluated. From the statistics, it can be understood that potent pollutant sources including fertilizer consumption, population, livestock, and carbon uptake have increased. Leaching tests were carried out with soils and biomasses sampled at agricultural-forestry area. From the leaching experiments, leachate qualities as a ratio of $COD_{Cr}/BOD$ were in the range of 2.5-5.0, implying that NOM (natural organic matters) discharged from the forestry area was mainly responsible for the COD accumulation. It can be understood from this research that diffuse pollutants from forestry areas should be controlled properly to reduce COD accumulation in the lakes.

Design for Landfill Gas Appliation by Low Calorific Gas Turbine and Green House Optimization Technology (Low Calorific Gasturbine 매립지 적용 및 유리온실 운용기술 설계)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Lee, Jung-Bin;Rhim, Sang-Gyu
    • New & Renewable Energy
    • /
    • v.6 no.2
    • /
    • pp.27-32
    • /
    • 2010
  • Low Calorific Gas Turbine (LCGT) has been developed as a next generation power system using landfill gas (LFG) and biogas made from various organic wastes, food Waste, waste water and Livestock biogas. Low calorific fuel purification by pretreatment system and carbon dioxide fixation by green house system are very important design target for the optimum applications of LCGT. Main troubles of Low Calorific Gas Turbine system was derived from the impurities such as hydro sulfide, siloxane, water contained in biogas. Even if the quality of the bio fuel is not better than natural gas, LCGT may take low quality gas fuel and environmental friendly power system. The mechanical characterisitics of LCGT system is a high energy efficiency (>70%), wide range of output power (30 kW - 30 MW class) and very clean emission from power system (low NOx). A green house has been designed for four different carbon dioxide concentration from ambient air to 2000 ppm by utilizing the exhaust gas and hot water from LCGT system. LCGT is expected to contribute achieving the target of Renewable Portfolio Standards (RPS).

Voltammetric Determination of Droxidopa in the Presence of Tryptophan Using a Nanostructured Base Electrochemical Sensor

  • Yaghoubian, Halimeh;Jahani, Shohreh;Beitollahi, Hadi;tajik, Somayeh;Hosseinzadeh, Rahman;Biparva, Pouria
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.109-117
    • /
    • 2018
  • A novel carbon paste electrode modified with $Cu-TiO_2$ nanocomposite, 2-(ferrocenylethynyl)fluoren-9-one (2FF) and ionic liquid (IL) (2FF/$Cu-TiO_2$/IL/CPE) was fabricated and employed to study the electrocatalytic oxidation of droxidopa, using cyclic voltammetry (CV), chronoamperometry (CHA) and differential pulse voltammetry (DPV) as diagnostic techniques. It has been found that the oxidation of droxidopa at the surface of modified electrode occurs at a potential of about 295 mV less positive than that of an unmodified CPE. DPV exhibits a linear dynamic range from $5.0{\times}10^{-8}$ to $4.0{\times}10^{-4}M$ and a detection limit of 30.0 nM for droxidopa. Finally this modified electrode was used for simultaneous determination of droxidopa and tryptophan. Also the 2FF/$Cu-TiO_2$/IL/CPE shows excellent ability to determination of droxidopa and tryptophan in real samples.

A Strip Sensor Based on PbO2/Carbon Paste Electrode to Determine Sweetener Contents in Fruits (이산화납/탄소 반죽 전극을 이용한 과당 농도 측정 스트립센서)

  • Lee, Jae Seon;Cho, Joo Young;Heo, Min;Lim, Woo-Jin;Lee, Sang Eun;Nam, Hakhyun;Cha, Geun Sig;Shin, Jae Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.2
    • /
    • pp.130-137
    • /
    • 2014
  • A strip sensor based on $PbO_2$/carbon paste electrode was prepared by a screen-printing method, and employed to electrochemically determine the concentration of fruit sweeteners(i.e. glucose, sucrose, and fructose). The $PbO_2$/carbon paste electrode could monitor electrocatalytic oxidation of organic compounds such as carbohydrates, and measure the levels of natural sweeteners without enzyme. Severe interference from ascorbic acid was effectively reduced by modifying the electrode surface with a Nafion membrane. The response level of the Nafion/$PbO_2$/carbon paste electrode increased in the order of fructose, sucrose, and glucose, which corresponds to the order of sweetness perceived by humans.

Water Management Plan for the Nakdong River Using TOC and COD (총유기탄소와 화학적산소요구량을 이용한 낙동강 물관리 방안)

  • Bo Eun Kim;Meea Kang;Gyo-Cheol Jeong
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.51-59
    • /
    • 2023
  • The Nakdong river is both a natural resource crucial to underwater ecosystems and a water source for its basin's residents. Industrial wastewater and domestic sewage must meet the relevant standards for discharged water before they can flow into the river. The correlation between old and new measures of organic matter was examined using water quality data from 50 monitoring locations in the main stream of the Nakdong river. The coefficient of determination (R2) for total organic carbon (TOC), the new measure of organic matter, and chemical oxygen demand (COD), the old measure of organic matter, in the main stream of the Nakdong river was 0.6134, indicating high correlation. Water quality at each location assessed using TOC and COD showed disparities that cannot be ignored: quality appeared higher when evaluating the main stream of the Nakdong river using TOC instead of COD. Therefore, there remains a need to review water quality ratings based on TOC; continuous monitoring of COD is also required. In addition, the cause of the difference should be clearly identified to help assess artificial sources of pollution and natural factors affecting organic matter. Water management of the Nakdong river will then be possible using the water quality rating.