• Title/Summary/Keyword: Natural oil absorbent

Search Result 4, Processing Time 0.023 seconds

Adsorption Characteristics of Natural Powdered Oil Absorbent for Marine Oil Pollution (해양오염제거용 천연분말상 유흉착재의 흡착 특성에 관한 연구)

  • 김인수;이진석;김동근;고성정
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.7 no.1
    • /
    • pp.7-14
    • /
    • 2001
  • The amount of petroleum consumption has been Increased according to the industrialization and It leads to the increase of the possibility of marine oil pollution. In Korea, some countermeasures including oil skimmer, gelling agent and herding agent of oil have been used for the remediation of the pollution. However, most of them have lets of shortcomings in the application under in-situ condition, because they are sensitive to the situation such as geographical feature, the wind and the tide. In reported literature, the natural powdered oil absorbent which is made of peat moss is an effective mean to clean spilled oil from lake or coast. However, the peat moss is a natural resource which is only Produced from a specific cold weather are like Canada. This indicates that the alternative materials which is readily obtained from everywhere are needed for powdered oil absorbent. Therefore. in the study, same natural materials including pine leaves and straw are tested as the alternative materials for the absorbent. The raw materials were dried and treated by heat at various temperature during several Periods and then. shattered by a grain cracking machine. The oil sorption capacity of the prepared materials was compared according to the methods of heat treatment and their sizes. The proportion of hydrogen cyanide to combustion of the absorbents was measured to confirm their final disposal methods. The biodegradability test of the absorbents was carried our to evaluate possibility of a side pollution in the coast. In was found that the heat treatment of pine leaves enhanced the capacity of oil sorption and decreased the water sorption. The maximum oil sorption was observed for the material treated at 18$0^{\circ}C$for 60 min. The amount of hydrogen cyanide from the combustion were 0.09ml/g, 0.07ml/g for pine leaves and straw respectively meaning that the final disposal by combustion might be feasible. The amount or organic carbon extracted from pine leaves during 7 days was up to 0.015g organic carbon from one gram of pine leaves. but the degradation was as fast as for glucose. It is concluded that the pine leaves can be served as a good raw material for the powdered oil absorbent like peat moss.

  • PDF

Efficiency Characteristics by Mixed Absorbents for the Removal of Odor Compounds in the Wet Scrubber (습식세정탑 내 악취가스 제거를 위한 복합흡수제의 효율 특성)

  • Park, Young G.;Kim, Jeong-in
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.48-55
    • /
    • 2011
  • It was found that the absorbent mixed with 2-aminoethanol and others has been applied to remove them via chemical neutralization. The absorbent of natural second metabolites was achieved by a removal efficiency of 20~30% by itself depending on treatment conditions, but the complex absorbent mixed with 0.2% amine chemical provides the removal efficiency of over 98%. Optimal removal efficiencies have been examined against two major parameters of the temperature and pH to remove ammonia and hydrogen sulfide gases. The chemical analysis was also performed to analyze the composition of an essential oil by GC-MS. The monoterpenes in an essential oil reacted with odorous compounds by neutralization and their reaction mechanism was partially elucidated.

Enhanced Natural Purification of Crude Oil Contaminated Tidal Flat (원유로 오염된 갯벌 지역의 자연정화 기능 향상 기술의 개발)

  • Kim, Young-A;Sung, Ki-June
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.5
    • /
    • pp.24-30
    • /
    • 2011
  • Tidal flats which are ecologically sensitive, are hard to remediate once they are contaminated by oil spill accidents. Traditional oil remediation measures focus on removal efficiency, and their improper implementation can adversely affect crude oil contaminated coastal areas and greatly disrupt the structure and functions of crude oil contaminated tidal flats. In this study, the oil degradation due to the implementation of remediation measures naturally enhanced using air and natural oil sorbents was evaluated in the lower strata of tidal flats. The effects of air and natural oil sorbents on oil degradation for two concentration levels (< 500 ppm and > 500 ppm) were tested at artificially contaminated tidal flats. Fifty days after these treatments, the natural oil sorbent treatment showed the lowest total petroleum hydrocarbon (TPH) concentration ($4.46{\pm}1.47%$) at the low concentration level, whereas both air and natural oil sorbent treatments showed high degradation efficiencies at the high concentration level ($29.30{\pm}4.39%$). Although the phosphatase activity decreased for all treatments, there was no significant difference between the decreases for the different treatments; on the other hand, B-glucosidase activities were high for both air and natural oil sorbent treatments. Although degradation efficiencies decreased as the concentration increased, the air provision and natural oil sorbent treatment could be an effective ecological restoration measure for oil contaminated tidal flats while minimizing the environmental impact of the remediation efforts.

Operation Characteristics of Pilot-scale Acid Gas Removal Process (Pilot 규모 산성가스 제거공정 운전 특성)

  • Lee, Seung-Jong;Yoo, Sang-Oh;Chung, Seok-Woo;Yun, Yong-Seung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.533-536
    • /
    • 2009
  • The gasification technology is a very flexible and versatile technology to produce a wide variety products such as electricity, steam, hydrogen, Fisher-Tropsch(FT) diesels, Dimethyl Ether(DME), methanol and SNG(Synthetic Natural Gas) with near-zero pollutant emissions. Gasification converts coal and other low-grade feedstocks such as biomass, wastes, residual oil, petroleum coke, etc. to a very clean and usable syngas. Syngas is produced from gasifier including CO, $H_2$, $CO_2$, $N_2$, particulates and smaller quantities of $CH_4$, $NH_3$, $H_2S$, COS and etc. After removing pollutants, syngas can be variously used in energy and environment fields. The pilot-scale coal gasification system has been operated since 1994 at Ajou University in Suwon, Korea. The pilot-scale gasification facility consists of the coal gasifier, the hot gas filtering system, and the acid gas removal (AGR) system. The acid gas such as $H_2S$ and COS is removed in the AGR system before generating electricity by gas engine and producing chemicals like Di-methyl Ether(DME) in the catalytic reactor. The designed operation temperature and pressure of the $H_2S$ removal system are below $50^{\circ}C$ and 8 kg/$cm^2$. The iron chelate solution is used as an absorbent. $H_2S$ is removed below 0.1 ppm in the H2S removal system.

  • PDF