• Title/Summary/Keyword: Natural mineral pigments

Search Result 16, Processing Time 0.024 seconds

The Characteristics of Particle Size in Natural Mineral Pigment for Azurite Raw Material (남동광석(Azurite) 원료 천연 광물 안료의 입도분포 특징)

  • Go, In Hee;Jeong, Hye Young;Park, Ju Hyeon;Jeong, Sir Lin;Jo, A Hyeon
    • Journal of Conservation Science
    • /
    • v.31 no.4
    • /
    • pp.331-339
    • /
    • 2015
  • This study were conducted the particle-size analysis on 57 blue pigments to understand the step distribution characteristics of blue pigments made out of Azurite by using Malvern's Mastersizer 2000. As the result, most of the conventional blue pigments in Korea, Japan, and Chinese showed good granularity step separation except for few, and the smaller the particle, the more the Span value increased and the wider the granularity distribution range. On the basis of Friedman and Sanders's Grain size, most of the pigments were sand size to silt size. 72.2% of B-100 was clay size and 2.5% of A-14 was gravel size. Even the same components can differ by the grain size directly affecting the important property such as color formation, oil absorption, specific gravity, usability, etc. so the information about the granularity distribution would be used for basic data to deal with natural pigments.

Manufacturing Method and Characteristics of the Dongrok(copper chloride) pigments (동록(염화동) 안료의 제조방법 및 특성에 관한 연구)

  • KANG Yeongseok;PARK Juhyun;MUN Seongwoo;HWANG Gahyun;KIM Myoungnam;LEE Sunmyung
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.2
    • /
    • pp.148-169
    • /
    • 2023
  • Hayeob pigment is known as one of the traditional dark green pigments, but the color, raw material, and manufacturing method have not been clearly identified. However, comparing the analysis results of the particle shape and constituent minerals of Hayeob pigments revealed through pigment analysis studies of colored cultural properties such as Dancheong, Gwaebul, and paintings, Hayeob pigments appear to be the same as Dongrok pigments produced by salt corrosion. Therefore, in order to restore Hayeob pigment, the manufacturing method of Dongrok pigment was studied based on the records of old literature. The Dongrok pigment manufacturing method confirmed in the old literature records is a natural corrosion method in which copper powder and a caustic are mixed and then left in a humid condition to corrode. Based on this, artificial corrosion using a corrosion tester was adopted to corrode the copper powder more efficiently, and an appropriate mixing ratio was selected by analyzing the state of corrosion products according to the mixing ratio of the caustic agent. In addition, the manufacturing method of Dongrok pigment was established by adding a salt removal process to remove residual caustic agents and a purification process to increase chroma during pigment coloring. The prepared Dongrok pigments have a bluish green or green color, show an elliptical particle shape and a form in which small particles are aggregated, and a porous surface is observed. The main constituent elements are copper(Cu) and chlorine(Cl), and the main constituent mineral is identified as atacamite [Cu2Cl(OH)3]. As a result of an accelerated weathering test to evaluate the stability of the prepared Dongrok pigments, it was found that the greenness partially decreased and the yellowness significantly increased as deterioration progressed. Before deterioration, the Dongrok pigments had lower yellowness compared to the Hayeob pigments of the old Dancheong, but after deterioration, yellowness increased significantly, and it was found to have a similar chromaticity range as Dancheong's Hayeob pigments. As a result, the prepared Dongrok pigments were confirmed to be similar to Dancheong's Hayeob pigments in terms of color as well as particle shape and constituent minerals.

Review of Copper Trihydroxychloride, a Green Pigment Composed of Copper and Chlorine (구리와 염소 주성분 녹색 안료 코퍼 트리하이드록시클로라이드(Copper Trihydroxychloride)에 대한 고찰)

  • Oh, Joonsuk;Lee, Saerom;Hwang, Minyoung
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.2
    • /
    • pp.64-87
    • /
    • 2020
  • Copper trihydroxychloride (atacamite, botallackite, paratacamite, etc.), the first green pigment used in Mogao Grotto's mural paintings of China, has been known as "copper green", "green salt", and "salt green", etc. and has been used as an important green pigment with malachite. At first, the natural mineral atacamite was employed, but after the Five Dynasties (907~960 CE), synthetic copper trihydroxychloride was primarily used. In Chinese literature, copper green, green salt, and salt green are recorded as being made via reaction with copper powder, Gwangmyeongyeom (natural sodium chloride), and Yosa (natural ammonium chloride), and the prepared material was analyzed to be copper trihydroxychloride. Copper trihydroxychloride pigment was not found in paintings prior to the Joseon Dynasty (1392~1910 CE) in Korea. In analysis of the green pigments used in paintings and the architectural paintworks in the Joseon Dynasty, copper trihydroxychloride was also shown to have been used as an important green pigment with malachite (Seokrok). In particular, the proportion of copper trihydroxychloride use was high in Buddhist paintings, shamanic paintings, and dancheongs (decorative coloring on wooden buildings). Some of these turned out to be synthetic copper trihydroxychloride, but it is unclear whether the rest of them are synthetic or natural pigments due to a lack of analyzed data. From literature and painting analyses, the pigment name of copper trihydroxychloride in the Joseon Dynasty turns out to be Hayeob, a dark green pigment. It is believed to have first been prepared by learning from China in the early Joseon period (early 15th century) and its use continued until the late 19th century with imported Chinese pigment. Round or oval particles with a dark core of copper trihydroxychloride which were used in Chinese literature were similar to the synthetic copper trihydroxychloride pigments used in the Joseon Dynasty and Chinese paintings. Therefore, the synthetic copper trihydroxychloride pigments of Korea and China are believed to have been prepared in a similar way.

Effects of Ionizing Energy and Ozone Treatments on the Microbial Decontamination and Physicochemical Properties of Aloe Powders and Bee Pollen

  • Yook, Hong-Sun;Chung, Young-Jin;Kim, Jung-Ok;Kwon, Oh-Jin;Kim, Sung;Byun, Myung-Woo
    • Preventive Nutrition and Food Science
    • /
    • v.2 no.2
    • /
    • pp.89-95
    • /
    • 1997
  • The comparative effects of gamma irradiation an ozone treatment on the microbiological and physicochemical qualities were investigated for the improvement of hygienic quality of aloe powder and bee pollen. Gamma irradiation at 7.5~10kGy could reduce total aerobic bacteria, molds and coliforms below detection levels, but ozone treatment up to 18 ppm for 8hr was not sufficient to eliminate the microorganisms from aloe powder and bee pollen. The physicochemical properties such as fatty acid an amino acid compositions, mineral content, TBA value, barbaloin and pigment contents were not significantly changed by gamma irradiation, whereas ozone treatment caused significant changes in fatty acid composition, lipid oxidation and destruction of barbaloin and natural pigments.

  • PDF

Monitoring the Change of Physical Properties of Traditional Dancheong Pigments (전통 단청안료 표면의 물리적 특성 변화 모니터링)

  • Kim, Ji Sun;Jeong, Hye Young;Byun, Doo-Jin;Yoo, Min Jae;Kim, Myoung Nam;Lee, Sun Myung
    • Journal of Conservation Science
    • /
    • v.36 no.6
    • /
    • pp.549-561
    • /
    • 2020
  • This study aimed to assess the performance and life of nine natural mineral dancheong pigments: Seokganju, Jinsa, Hwangto, Jahwang, Wunghwang, Seokrok, Noerok, Seokcheong, and Baekto. The design of the accelerated weathering test considered the domestic climate characteristics and the location of Dancheong. Outdoor weathering tests were conducted at the Research Institute in Daejeon and the Sungnyemun Gate in Seoul to confirm the field reproducibility of the accelerated weathering test. Monitoring of the physical changes in pigments through accelerated and outdoor weathering tests are based on ultraviolet exposure dose. Despite small cracks at the beginning of the tests, the monitoring showed that Seokganju and Baekto had no marked physical changes, but the surface cracks of Jinsa and Seorok continue to expand. Hwangto and Noerok were marked with water or were resin stained, and the particles of Jahwang, Wunghwang, and Seokcheong had lost their luster. Despite the absolute difference in color change in each test, the final chromaticity change patterns of pigments were similar in that the color difference between Baekto and Noerok was below five, and Jina was above 28. The physical and surface color pigment changes were more concentrated in outdoor weathering tests than in accelerated tests, and the Seoul site was more intense than the Daejeon site. This is because outdoor weathering tests are exposed to severe variations of temperature and moisture or deposition of dust particles and, in the case of Seoul, the site is more exposed to the external environment than the Daejeon site.

Development of Black Pigment Using Seokganju of Mountain Gyeryong (계룡산 석간주를 사용한 흑색 안료 개발)

  • Lim, Seong-Ho;Kim, Gumsun;Park, Joo-Seok;Lee, Byung-Ha
    • Korean Journal of Materials Research
    • /
    • v.23 no.4
    • /
    • pp.233-239
    • /
    • 2013
  • We collected Seokganju minerals (regions in Gyeryong Mountain, Sangsin-ri, Banpo-myeon, Gongju Chungcheongnam-province), which were used as natural color pigments for grayish-blue during the 15th~16th centuries of the Joseon era, and investigated their crystallographic features to develop a black pigment having a spinel structure. By a Raman analysis, the color of Seokganju under transparent glaze as a pigment for painting was black because hematite ($Fe_2O_3$) in Seokganju was converted to magnetite ($Fe_3O_4$) However, Seokganju into the transparent glaze as a pigment was brown because of hematite ($Fe_2O_3$) and small amounts of maghemite (${\gamma}-Fe_2O_3$) in Seokganju minerals. Only Seokganju mineral is used, it is not suitable for black pigment into the transparent glaze. This study tried to develop a spinel crystal black pigment stabilized by Seokganju with CoO, $Cr_2O_3$, NiO, and $MnO_2$ at $1280^{\circ}C$. A Raman spectroscopy analysis was performed to verify the presence of Mn The results showed that it existed as spinel, and two crystal phases $CoFe_2O_4$ and $MnFe_2O_4$ were mixed. $CoFe_2O_4$ spinel has a dark grayish black color and $MnFe_2O_4$ spinel has a greenish black color, and these two appeared as black. The color of a specimen calcined by adding 6 wt% of pigment mixed with 5 wt% of $MnO_2$ added to lime glaze was analyzed with a UV spectrophotometer. When applying the color pigment, it appeared black stabilized with $L^*$24.23, $a^*$ 0.12, $b^*$ -2.29 at $1260^{\circ}C$ oxidative calcination, With $1240^{\circ}C$ reduction firing, it is appeared black stabilized with low brightness of $L^*$ 23.13, $a^*$ -1.12, $b^*$ 0.54.