• Title/Summary/Keyword: Natural killer T-cells

Search Result 124, Processing Time 0.031 seconds

Tim-3 Expression by Peripheral Natural Killer Cells and Natural Killer T Cells Increases in Patients with Lung Cancer - Reduction after Surgical Resection

  • Xu, Li-Yun;Chen, Dong-Dong;He, Jian-Ying;Lu, Chang-Chang;Liu, Xiao-Guang;Le, Han-Bo;Wang, Chao-Ye;Zhang, Yong-Kui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9945-9948
    • /
    • 2014
  • Background: The purpose of this study was to investigate Tim-3 expression on peripheral CD3-CD56+ natural killer (NK) cells and CD3+CD56+ natural killer T (NKT) cells in lung cancer patients. Materials and Methods: We analyzed Tim-3+CD3-CD56+ cells, Tim-3+CD3-$CD56^{dim}$ cells, Tim-3+CD3-$CD56^{bright}$ cells, and Tim-3+CD3+CD56+ cells in fresh peripheral blood from 79 lung cancer cases preoperatively and 53 healthy controls by flow cytometry. Postoperative blood samples were also analyzed from 21 members of the lung cancer patient cohort. Results: It was showed that expression of Tim-3 was significantly increased on CD3-CD56+ cells, CD3-$CD56^{dim}$ cells and CD3+CD56+ cells in lung cancer patients as compared to healthy controls (p=0.03, p=0.03 and p=0.04, respectively). When analyzing Tim-3 expression with cancer progression, results revealed more elevated Tim-3 expression in CD3-CD56+ cells, CD3-$CD56^{dim}$ cells and CD3+CD56+ cells in cases with advanced stages (III/IV) than those with stage I and II (p=0.02, p=0.04 and p=0.01, respectively). In addition, Tim-3 expression was significantly reduced on after surgical resection of the primary tumor (p<0.01). Conclusions: Tim-3 expression in natural killer cells from fresh peripheral blood may provide a useful indicator of disease progression of lung cancer. Furthermore, it was indicated that Tim-3 might be as a therapeutic target.

Natural killer T cell and pathophysiology of asthma

  • Jang, Gwang Cheon
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.2
    • /
    • pp.136-145
    • /
    • 2010
  • Natural killer T (NKT) cell is a special type of T lymphocytes that has both receptor of natural killer (NK) cell (NK1.1, CD161c) and T cell (TCR) and express a conserved or invariant T cell receptor called $V{\alpha}14J{\alpha}18$ in mice or Va24 in humans. Invariant NKT (iNKT) cell recognizes lipid antigen presented by CD1d molecules. Marine-sponge-derived glycolipid, ${\alpha}-galactosylceremide$ (${\alpha}-GalCer$), binds CD1d at the cell surface of antigen-presenting cells and is presented to iNKT cells. Within hours, iNKT cells become activated and start to secrete Interleukin-4 and $interferon-{\gamma}$. NKT cell prevents autoimmune diseases, such as type 1 diabetes, experimental allergic encephalomyelitis, systemic lupus erythematous, inflammatory colitis, and Graves' thyroiditis, by activation with ${\alpha}-GalCer$. In addition, NKT cell is associated with infectious diseases by mycobacteria, leshmania, and virus. Moreover NKT cell is associated with asthma, especially CD4+ iNKT cells. In this review, I will discuss the characteristics of NKT cell and the association with inflammatory diseases, especially asthma.

AN IMMUNOHISTOCHEMICAL STUDY ON THE CHANGES OF LYMPHOCYTE SUBPOPULATIONS AND NK CELLS ACCORDING TO THE SEVERITIES OF THE PERIODONTAL DISEASE (치주질환 심도에 따른 조직내 림프구 및 NK 세포의 변화에 관한 면역조직학적 연구)

  • Choi, Ho-Keun;Kwon, Young-Hyunk;Lee, Man-Sup
    • Journal of Periodontal and Implant Science
    • /
    • v.23 no.2
    • /
    • pp.300-314
    • /
    • 1993
  • Periodontal disease research has been focused on understanding the immunopathologic mechanisms which may operate in the development and maintenance of peiodontal inflammatory changes. Immunologic and inflammatory responses may relate to the etiology and pathogenesis of periodontal disease. In order to research immunopathology of periodontal disease, previous investigators have spent much time on the distribution of lymphocyte subpopulations and NK cells but they have spent less time on the changes of those cells to the periodontal disease severity. The purpose of study was performed to investigate the changes of the distribution of T lymphocytes, B lymphocytes, T lymphocyte subsets, and Natural Killer cells in the gingival epithelium and connective tissue of the periodontal disease with the various clinical parameters including Gingival Index, Sulcular Bleeding Index, and pocket depth. Gingival tissues were obtained from 25 patients with different severity of periodontal disease. Serial cryostat sections displaying a cross section of gingiva were labelled with monoclonal antibody for pan T cells, T cytotoxic/suppressor cells, T helper/inducer cells, pan B cells, and NK cells were develped using an avidin-biotin-peroxidase system. Lymphocyte populations were enumerated in repeatable fields from gingival section. 1. T cells were more increased at grade 1 and 3 than at grade 0 of gingival index (p<0.05). Helper T cells and NK cells were significantly increased at grade 1, 2, 3 than at grade 0(p<0.05). 2. T cells were more decreased at grade 3 and 4 than at grade 1 of sulcular bleeding index (p<0.01, p<0.05). Especially, Natural Killer cells were significantly increased at grade 1, 2, 3, 4 than at grade 0 (p<0.05, p<0.001). 3. The ratios of helper T/suppressor T cells were more decreased at grade 4 than at grade 0 and at grade 4 than at grade 2 of sulcular bleeding index (p<0.05, p<0.05). 4. Helper T cells were significantly decreased at grade II and III than at grade I, however the Natural Killer cells showed a increasing tendency with the increase of the pocket depth, there were no significant differences between each grade of pocket depth. 5. The ratios of helper T/suppressor T cells were tended to be decreased with the increase of the pocket depth, there were no significant differences between each grades of pocket depth. There was a very weak change in the distribution of T lymphocytes, B lymphocytes, T lymphocyte subsets, and Natural Killer cells in the gingival epithelium and connective tissue of the periodontal lesion with the various clinical parameters including gingial index, sulcular bleeding index, and pocket depth. But, the number of T lymphocytes and Natural Killer cells were significantly changed in gingival index and sulcular bleeding index.

  • PDF

Advanced T and Natural Killer Cell Therapy for Glioblastoma

  • Wan-Soo Yoon;Dong-Sup Chung
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.4
    • /
    • pp.356-381
    • /
    • 2023
  • Although immunotherapy has been broadly successful in the treatment of hematologic malignancies and a subset of solid tumors, its clinical outcomes for glioblastoma are still inadequate. The results could be due to neuroanatomical structures such as the blood-brain-barrier, antigenic heterogeneity, and the highly immunosuppressive microenvironment of glioblastomas. The antitumor efficacy of endogenously activated effector cells induced by peptide or dendritic cell vaccines in particular has been insufficient to control tumors. Effector cells, such as T cells and natural killer (NK) cells can be expanded rapidly ex vivo and transferred to patients. The identification of neoantigens derived from tumor-specific mutations is expanding the list of tumor-specific antigens for glioblastoma. Moreover, recent advances in gene-editing technologies enable the effector cells to not only have multiple biological functionalities, such as cytokine production, multiple antigen recognition, and increased cell trafficking, but also relieve the immunosuppressive nature of the glioblastoma microenvironment by blocking immune inhibitory molecules, which together improve their cytotoxicity, persistence, and safety. Allogeneic chimeric antigen receptor (CAR) T cells edited to reduce graft-versus-host disease and allorejection, or induced pluripotent stem cell-derived NK cells expressing CARs that use NK-specific signaling domain can be a good candidate for off-the-shelf products of glioblastoma immunotherapy. We here discuss current progress and future directions for T cell and NK cell therapy in glioblastoma.

The Natural Killer Cell Response to HCV Infection

  • Ahlenstiel, Golo
    • IMMUNE NETWORK
    • /
    • v.13 no.5
    • /
    • pp.168-176
    • /
    • 2013
  • In the last few years major progress has been made in better understanding the role of natural killer (NK) cells in hepatitis C virus (HCV) infection. This includes multiple pathways by which HCV impairs or limits NK cells activation. Based on current genetic and functional data, a picture is emerging where only a rapid and strong NK cell response early on during infection which results in strong T cell responses and possible subsequent clearance, whereas chronic HCV infection is associated with dysfunctional or biased NK cells phenotypes. The hallmark of this NK cell dysfunction is persistent activation promoting ongoing hepatitis and hepatocyte damage, while being unable to clear HCV due to impaired IFN-${\gamma}$ responses. Furthermore, some data suggests certain chronically activated subsets that are $NKp46^{high}$ may be particularly active against hepatic stellate cells, a key player in hepatic fibrogenesis. Finally, the role of NK cells during HCV therapy, HCV recurrence after liver transplant and hepatocellular carcinoma are discussed.

The Emerging Role of Natural Killer Cells in Innate and Adaptive Immunity

  • Kim, Eun-Mi;Ko, Chang-Bo;Myung, Pyung-Keun;Cho, Daeho;Choi, Inpyo;Kang, Hyung-Sik
    • IMMUNE NETWORK
    • /
    • v.4 no.4
    • /
    • pp.205-215
    • /
    • 2004
  • In the early host defense system, effector function of natural killer (NK) cells results in natural killing against target cells such as microbe-infected, malignant, and certain allogenic cells without prior stimulation. NK cell cytotoxicity is selectively regulated by homeostatic prevalence between a repertoire of both activating and inhibitory receptors, and the discrimination of untransformed cells is achieved by recognition of major histocompatibility complex (MHC) class I alleles through inhibitory signals. Although it is well known that the bipotential T/NK progenitors are derived from the common precusor, functional mechanisms in terms of the development of NK cells remain to be further investigated. NK cells are mainly involved in innate immunity, but recent studies have been reported that they also play a critical role in adaptive immune responses through interaction with dendritic cells (DC). This interaction will provide effector functions and development of NK cells, and elucidation of its precise mechanism may lead to therapeutic strategies for effective treatment of several immune diseases.

Crosstalk between Adipocytes and Immune Cells in Adipose Tissue Inflammation and Metabolic Dysregulation in Obesity

  • Huh, Jin Young;Park, Yoon Jeong;Ham, Mira;Kim, Jae Bum
    • Molecules and Cells
    • /
    • v.37 no.5
    • /
    • pp.365-371
    • /
    • 2014
  • Recent findings, notably on adipokines and adipose tissue inflammation, have revised the concept of adipose tissues being a mere storage depot for body energy. Instead, adipose tissues are emerging as endocrine and immunologically active organs with multiple effects on the regulation of systemic energy homeostasis. Notably, compared with other metabolic organs such as liver and muscle, various inflammatory responses are dynamically regulated in adipose tissues and most of the immune cells in adipose tissues are involved in obesity-mediated metabolic complications, including insulin resistance. Here, we summarize recent findings on the key roles of innate (neutrophils, macrophages, mast cells, eosinophils) and adaptive (regulatory T cells, type 1 helper T cells, CD8 T cells, B cells) immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. In particular, the roles of natural killer T cells, one type of innate lymphocyte, in adipose tissue inflammation will be discussed. Finally, a new role of adipocytes as antigen presenting cells to modulate T cell activity and subsequent adipose tissue inflammation will be proposed.

The Alterations of the Lymphocyte Subsets and the Natural Killer Cell Activity in the Pregnant Mouse (수태중인 생쥐에 있어서 림프구아형 및 자연살해세포 활성도의 변화)

  • 신주옥;고기석;최임순
    • Biomedical Science Letters
    • /
    • v.2 no.2
    • /
    • pp.211-222
    • /
    • 1996
  • The conceptus which are resulted by mating between two genetically non-identical partners can be considered to be an allograft to the mother science which is not rejected by the mother's immunological attack. The present studies have been, therefore, attempted in order to elucidate the mechanism by which protection of the fete-placental allograft, between the C3H/HeJ female mouse and DBA/2 male mouse occurred. For this purpose, firstly systemic immunity was investigated by measuring T and B lymphocytes subsets. Natural killer cell activity in maternal splenic tissue and by observing the effects of pregnancy serums, progesterone and hCG on immune systems. Secondly, local immunity also investigated by measuring T lymphocytes subsets, natural killer cell activity in lymph nodes draining the uterus. The subsets of Thy-1.2$^+$ cells and L 3T4$^+$ cells decreased slightly while the subsets of Ly2$^+$ cell increased significantly compared with those of the control group beyond the mid-gestational stage. The subsets of B cell gradually in-creased from the mid-gestational stage untill delivery. The natural killer cell activity in the maternal splenic tissue significantly increased during the period of 5th to 8th day of gestation. The natural killer cell activity was significantly suppressed by the pregnancy serums and non-pregnant serums compared with those of serum-free group. The treatment of hCG significantly suppressed natural killer cell activity in the dose dependent manner (1 unit/ml-1000 unit/ml) while pro-gesterone increased the natural killer cell activity at phamarcological dose only. In the lymph nodes draining the uterus, the subsets of Thy-1.2$^+$ cells significantly increased during the period of implantation and L3T4$^+$ cell subsets slightly increased during the mid-gestational stage. The subsets of Ly2$^+$ cell increased significantly during the mid-gestational stage, but decreasing slightly be-fore delivery. The natural killer cell activity was significantly elevated after the implantation period in the lymph nodes draining the uterus. The natural killer cell activity of the lymph nodes draining the uterus was higher than those of splenic tissue during the same periods of gestation. It is therefore, concluded that during the pregnancy, the phenomena which the fete-placental allograft has not been rejected and rather protected from the maternal immunological attack might be due to local immune suppression in fete-maternal interface tissues rather than systemic immune suppression. And the subsets of Thy-1.2$^+$ cells and L3T4$^+$ cells mainly contribute to accepting allograft in early stage of pregnancy, while the subsets of Ly2$^+$ cell and the subsets of B cell increased significantly compared with those of the control group beyond the mid-gestational stage, so their role in systemic immunity and local immunity gradually increased from the mid-gestational stage until delivery.

  • PDF

Human CD8+ T-Cell Populations That Express Natural Killer Receptors

  • June-Young Koh;Dong-Uk Kim;Bae-Hyeon Moon;Eui-Cheol Shin
    • IMMUNE NETWORK
    • /
    • v.23 no.1
    • /
    • pp.8.1-8.13
    • /
    • 2023
  • CD8+ T cells are activated by TCRs that recognize specific cognate Ags, while NK-cell activation is regulated by a balance between signals from germline-encoded activating and inhibitory NK receptors. Through these different processes of Ag recognition, CD8+ T cells and NK cells play distinct roles as adaptive and innate immune cells, respectively. However, some human CD8+ T cells have been found to express activating or inhibitory NK receptors. CD8+ T-cell populations expressing NK receptors straddle the innate-adaptive boundary with their innate-like features. Recent breakthrough technical advances in multi-omics analysis have enabled elucidation of the unique immunologic characteristics of these populations. However, studies have not yet fully clarified the heterogeneity and immunological characteristics of each CD8+ T-cell population expressing NK receptors. Here we aimed to review the current knowledge of various CD8+ T-cell populations expressing NK receptors, and to pave the way for delineating the landscape and identifying the various roles of these T-cell populations.

Experimental Studies on Activity of the Cultivated Mycelia of Phellinus linteus (상황(桑黃) 배양균사체의 활성에 관한 연구(I))

  • Kong, Young-Yun;Lee, Kwan-Ki;Nam, Sang-Yun;Hong, Nam-Doo
    • Korean Journal of Pharmacognosy
    • /
    • v.22 no.4
    • /
    • pp.233-239
    • /
    • 1991
  • Phellinus linteus was examined for its anticancer activity using an animal model. Water extract of Phellinus linteus was prepared from artificially cultivated mycelia. Neither toxicity nor abnormal changes of hematological parameters were observed in the rat given orally with high doses of drug extract for 15 days. ICR mice were transplanted with Sarcoma-180 tumor cells intraperitoneally and drug extract was daily given to the mice from 1 day after tumer transplantation for 3 weeks. Administration of drug extract significantly prolonged the survival duration of Sarcoma 180-transplanted mice. For the better understanding of the anticancer activity, we have examined the effect of the drug extract administration on various killer cell functions, such as natural killer(NK) cells, cytotoxic T-lymphocytes (CTL) and macrophages which have been known to be main effector cells in immune responses against tumors. The results from the 4 hr $^{51}Cr-release$ assay have shown that the drug extract augments mouse NK cell activity but neither CTL nor macrophages. It is possible, then, that the anticancer activity of the Phellinus linteus may be associated with augmentation of NK cell function in the cancerated hosts.

  • PDF