• Title/Summary/Keyword: Natural gas(LNG)

Search Result 409, Processing Time 0.024 seconds

Numerical Study on Characteristics and Control of Heading Angle of Floating LNG Bunkering Terminal for Improvement of Loading and Off-loading Performance

  • Oh, Seunghoon;Jung, Dong-Woo;Kim, Yun-Ho;Kwak, Hyun-Uk;Jung, Jae-Hwan;Jung, Sung-Jun;Park, Byeongwon;Cho, Seok-Kyu;Jung, Dongho;Sung, Hong Gun
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.77-88
    • /
    • 2020
  • In this study, heading characteristics and heading control performances were evaluated to achieve the wave shield effect. The wave shield effect originating from heading control reduces the relative motions of moored vessels in a floating liquefied natural gas bunkering terminal (FLBT). Therefore, loading and off-loading performances are improved through reduced relative motion. For the objective of this study and efficiency of the analysis, a simplified model was used that assuming no relative motion of the moored vessels in the FLBT. The simplified model involved modeling the environmental loads and inertia of several floating bodies, including FLBT, into the environmental loads and inertia of a single vessel. The simplified model was validated through comparisons with model tests. With the simplified model, heading characteristics and heading control simulations were performed using low-frequency planar motion equations. The heading characteristics and heading control performances of FLBT were analyzed through the results of simulations under the expected environmental conditions. The capacity of the tunnel thrust for the heading control performance was confirmed to be adequate for improvement of the loading and off-loading performances using the wave shielding effects under the operation conditions.

A Study on Standardization of Fracture Strength of Secondary Barrier of FSB in MARK-III LNG CCS using Weibull Distribution (Weibull 통계분석을 이용한 MARK-III LNG CCS의 2차 방벽 FSB 파단강도 표준화 연구)

  • Jeong, Yeon-Jae;Kim, Hee-Tae;Kim, Jeong-Dae;Oh, Hoon-Gyu;Kim, Yong-Tai;Park, Seong-Bo;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.3
    • /
    • pp.137-143
    • /
    • 2021
  • In this study, the fracture strength of Flexible Secondary Barrier (FSB) composites was standardized by conducting a distribution analysis of the fracture probability, considering that the fracture strength of FSB composites such as glass fiber reinforced composites is relatively large. As the mechanical performance of FSB composites varies with the fiber direction, 20 replicate uniaxial tensile tests were performed for different temperatures ranging from the ambient to cryogenic conditions, considering the actual operating environment of liquefied natural gas. For the probability statistical analysis, the Weibull distribution analysis derived from the weakest link theory was used, considering the large variance in the fracture strength and brittle fracture behavior. The results of the Weibull distribution analysis were used to calculate the standard fracture strength of the FSB composites for different fiber directions. The findings can help ensure the reliability of the FSB mechanical properties in different fiber directions in the design of the secondary barrier and structural analyses.

Effectiveness analysis of pre-cooling methods on hydrogen liquefaction process

  • Yang, Yejun;Park, Taejin;Kwon, Dohoon;Jin, Lingxue;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.3
    • /
    • pp.20-24
    • /
    • 2020
  • The purpose of this analytic study is to design and examine an efficient hydrogen liquefaction cycle by using a pre-cooler. The liquefaction cycle is primarily comprised of a pre-cooler and a refrigerator. The fed hydrogen gas is cooled down from ambient temperature (300 K) to the pre-cooling coolant temperature (either 77 K or 120 K approximately) through the pre-cooler. There are two pre-cooling methods: a single pre-coolant pre-cooler and a cascade pre-cooler which uses two levels of pre-coolants. After heat exchanging with the pre-cooler, the hydrogen gas is further cooled and finally liquefied through the refrigerator. The working fluids of the potential pre-cooling cycle are selected as liquid nitrogen and liquefied natural gas. A commercial software Aspen HYSYS is utilized to perform the numerical simulation of the proposed liquefaction cycle. Efficiency is compared with respect to the various conditions of the heat exchanging part of the pre-cooler. The analysis results show that the cascade method is more efficient, and the heat exchanging part of the pre-coolers should have specific UA ratios to maximize both spatial and energy efficiencies. This paper presents the quantitative performance of the pre-cooler in the hydrogen liquefaction cycle in detail, which shall be useful for designing an energy-efficient liquefaction system.

Investigation of ground condition charges due to cryogenic conditions in an underground LNG storage plant (지하 LNG 저장 시험장에서 극저온 환경에 의한 지반상태 변화의 규명)

  • Yi Myeong-Jong;Kim Jung-Ho;Park Sam-Gyu;Son Jeong-Sul
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.67-72
    • /
    • 2005
  • To investigate the feasibility of a new concept of storing Liquefied Natural Gas (LNG) in a lined hard rock cavern, and to develop essential technologies for constructing underground LNG storage facilities, a small pilot plant storing liquid nitrogen (LN2) has been constructed at the Korea Institute of Geoscience and Mineral Resources (KIGAM). The LN2 stored in the cavern will subject the host rock around the cavern to very low temperatures, which is expected to cause the development of an ice ring and the change of ground condition around the storage cavern. To investigate and monitor changes in ground conditions at this pilot plant site, geophysical, hydrogeological, and rock mechanical investigations were carried out. In particular, geophysical methods including borehole radar and three-dimensional (3D) resistivity surveys were used to identify and monitor the development of an ice ring, and other possible changes in ground conditions resulting from the very low temperature of LN2 in the storage tank. We acquired 3D resistivity data before and after storing the LN2, and the results were compared. From the 3D images obtained during the three phases of the resistivity monitoring survey, we delineated zones of distinct resistivity changes that are closely related to the storage of LN2. In these results, we observed a decrease in resistivity at the eastern part of the storage cavern. Comparing the hydrogeological data and Joint patterns around the storage cavern, we interpret this change in resistivity to result from changes in the groundwater flow pattern. Freezing of the host rock by the very low temperature of LN2 causes a drastic change in the hydrogeological conditions and groundwater flow patterns in this pilot plant.

An Error Correction Model for Long Term Forecast of System Marginal Price (전력 계통한계가격 장기예측을 위한 오차수정모형)

  • Shin, Sukha;Yoo, Hanwook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.453-459
    • /
    • 2021
  • The system marginal price of electricity is the amount paid to all the generating units, which is an important decision-making factor for the construction and maintenance of an electrical power unit. In this paper, we suggest a long-term forecasting model for calculating the system marginal price based on prices of natural gas and oil. As most variables used in the analysis are nonstationary time series, the long run relationship among the variables should be examined by cointegration tests. The forecasting model is similar to an error correction model which consists of a long run cointegrating equation and another equation for short run dynamics. To mitigate the robustness issue arising from the relatively small data sample, this study employs various testing and estimating methods. Compared to previous studies, this paper considers multiple fuel prices in the forecasting model of system marginal price, and provides greater emphasis on the robustness of analysis. As none of the cointegrating relations associated with system marginal price, natural gas price and oil price are excluded, three error correction models are estimated. Considering the root mean squared error and mean absolute error, the model based on the cointegrating relation between system marginal price and natural gas price performs best in the out-of-sample forecast.

Modeling of the Temperature-Dependent and Strain Rate-Dependent Dynamic Behavior of Glass Fiber-Reinforced Polyurethane Foams (유리 섬유 강화 폴리우레탄 폼의 온도 및 변형률 속도 의존 재료 거동 모델링)

  • Lee, Dong-Ju;Shin, Sang-Beom;Kim, Myung-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.547-555
    • /
    • 2019
  • The purpose of this study was to establish a numerical model of polyurethane foam (PUF) to simulate the dynamic response and strength of membrane-type Liquefied natural gas (LNG) Cargo containment system (CCS) under the impact load. To do this, initially, the visco-plastic behavior of PUF was characterized by testing the response of the PUF to the impact loads with various strain rates as well as PUF densities at room temperature and at cryogenic conditions. A PUF material model was established using the test results of the material and the FE analysis. To verify the validation of the established material model, simulations were performed for experimental applications, e.g., the dry drop test, and the results of FEA were compared to the experimental results. Based on this comparison, it was found that the dynamic response of PUF in dry drop tests, such as the reaction force and fracture behaviors, could be simulated successfully by the material model proposed in this study.

Hydrogen Production by Pyrolysis of Natural Gas : Thermodynamic Analysis (천연가스 열분해에 의한 수소 생산 : 열역학적 해석)

  • Yoon, Y.H.;Park, N.K.;Chang, W.C.;Lee, T.J.;Hur, T.;Lee, B.G.;Baek, Y.S.
    • Journal of Hydrogen and New Energy
    • /
    • v.13 no.1
    • /
    • pp.42-51
    • /
    • 2002
  • Methane can be converted directly to hydrogen by pyrolysis. The reaction is highly endothemic and heat must be supplied at high temperatures. Gibbs free energy minimization calculations have been carried out for the methane pyrolysis to determine equilibrium products. The calculation parameters are the temperature, the initial H/C ratio, the pressure and Gibbs energies of each substance. Methane, ethylene, acetylene, benzene, naphthalene, and hydrogen are the main products. Excluding hydrogen, it is observed that ethylene and aromatics(benzene+naphthalene) are predominant products below 1400K, whereas acetylene is significantly formed above 1400K. Hydrogen dilution increases the selectivities for ethylene and acetylene and decreases the selectivity for aromatics. Increasing the pressure also decreases the decomposition of methane.

The Effect on the Heat Transfer According to Geometric Variation of Air-Fin Vaporizer with at Cryogenic Temperature (형상변화에 따른 초저온 공온식 기화기의 열전달 효과)

  • Lee, Sang-Chul;Shin, You-Sik;Bae, Kang-Youl;Jeong, Hyo-Min;Chung, Han-Shik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.7 s.262
    • /
    • pp.581-587
    • /
    • 2007
  • At present time, LNG demand of the world is increasing and the piping line for NG transportation has been already installed in Korea. The air fm vaporizer is, however, required because of the transportation for remotely local areas. This paper numerically investigates on the heat transfer characteristics of relevant geometric variations of air-fin vaporizer which is heated by air not by sea water. This vaporizer must be designed in consideration of both efficiency and economics because air is relatively a little heat source. In this study, the pipe and the longitudinal fins are fundamental geometric considerations. Main parameters of geometry are the number, the thickness, and the length of the fins. Finally, the results of heat transfer effects are investigated with the characteristics of each parameter variation.

Structural Safety Evaluation of Marine Loading Arm Using Finite Element Analysis (유한요소해석을 이용한 해양 로딩암의 구조안전성 평가)

  • Song, Chang Yong;Choi, Ha Young;Shim, Seung Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.43-50
    • /
    • 2013
  • This paper presents a structural design review of a marine loading arm used for the fluid transfer of a liquid cargo from a ship or offshore plant. The marine loading arm is installed on a ship, offshore plant, or jetty in order to load or unload liquid cargo such as crude oil, liquefied natural gas (LNG), chemical products, etc. The structural design of this marine loading arm is obliged to comply with the design and construction specifications regulated by the oil companies and international marine forum (OCIMF). In this paper, the structural safety of the initial design for the marine loading arm is evaluated for the design load conditions required by various operational modes. The evaluated results based on a finite element analysis (FEA) are reviewed in relation to the OCIMF specifications.

Determination of Optimum Blank Shape to Minimize the Root Gap during TIG Welding in Hot Curvature Forming of Al5083 Thick Plate (열간 곡면성형된 Al5083 후판의 TIG 용접 시 루트갭 최소화를 위한 최적 블랭크 형상 결정)

  • Lee, Jeong Min;Ko, Dae Hoon;Lee, Kyung Hun;Lee, Chan Joo;Kim, Byung Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.815-823
    • /
    • 2013
  • The hot curvature forming of large aluminum plates is a process used to produce spherical liquefied natural gas (LNG) tanks. In this study, we describe a method to determine the optimum shape of blanks to minimize the root gap in the forming process. The method proposed in this study was applied to a small-scale model for thick plates with a curvature of 1500 mm and thickness of 6 mm. First, the shape of the curved shells was determined as the target shape, and then a coordinate transform was used to determine the optimum blank shape, which was then iteratively modified using the results of finite element method (FEM) simulations, including heat transfer, until the shape error was minimized. Experiments in forming using Al5083 thick plate were carried out, showing that the method can determine the optimum blank shape within an allowable root gap of 0.1 mm.