• 제목/요약/키워드: Natural frequency modes

검색결과 304건 처리시간 0.024초

Effect of natural frequency modes on sloshing phenomenon in a rectangular tank

  • Jung, Jae Hwan;Yoon, Hyun Sik;Lee, Chang Yeol
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권3호
    • /
    • pp.580-594
    • /
    • 2015
  • Liquid sloshing in two-dimensional (2-D) and three-dimensional (3-D) rectangular tanks is simulated by using a level set method based on the finite volume method. In order to examine the effect of natural frequency modes on liquid sloshing, we considered a wide range of frequency ratios ($0.5{\leq}fr{\leq}3.2$). The frequency ratio is defined by the ratio of the excitation frequency to the natural frequency of the fluid, and covers natural frequency modes from 1 to 5. When fr = 1, which corresponds to the first mode of the natural frequency, strong liquid sloshing reveals roof impact, and significant forces are generated by the liquid in the tank. The liquid flows are mainly unidirectional. Thus, the strong bulk motion of the fluid contributes to a higher elevation of the free surface. However, at fr = 2, the sloshing is considerably suppressed, resulting in a calm wave with relatively lower elevation of the free surface, since the waves undergo destructive interference. At fr = 2, the lower peak of the free surface elevation occurs. At higher modes of $fr_3$, $fr_4$, and $fr_5$, the free surface reveals irregular deformation with nonlinear waves in every case. However, the deformation of the free surface becomes weaker at higher natural frequency modes. Finally, 3-D simulations confirm our 2-D results.

축으로 고정된 승용차용 레디얼 타이어의 3차원 진동특성 (3-D Vibration Characteristics of Radial Tire for Passenger Car under Fixed Axle)

  • 김용우;남진영
    • 한국소음진동공학회논문집
    • /
    • 제12권3호
    • /
    • pp.228-235
    • /
    • 2002
  • Two kinds of experimental modal analyses have been performed on a radial tire for passenger car under fixed axle. One is the modal analysis to obtain three-dimensional modes of tire using accelerometers and the other is the one to identify cavity resonance frequency using a pressure sensor. From the first analysis, we have obtained three-dimensional natural modes and their decomposed 3-D modes in each direction, which make it possible to grasp the features of the modes that cannot be identified in the conventional 2-D modes and to classify the vibrationall modes into symmetric, non-symmetric, and antisymmetric modes in a simple way by using the experimental results. From the second experimental analysis, the cavity resonance frequency is found. Coomparing the results of the two analyses, we have Identified the three-dimensional mode of the cavity resonance. We also haute shown that natural frequencies of structural vibration depends on inflation Pressure while the cavity resonance does not.

실험모드해석에 의한 승용차용 레디얼 타이어의 3차원 진동특성 (Experimental Modal Analysis for 3-D Vibration Characteristics of Radial Tire for Passenger Car under Free-Suspension)

  • 김용우;남진영
    • 한국자동차공학회논문집
    • /
    • 제10권3호
    • /
    • pp.227-236
    • /
    • 2002
  • We have performed two kinds of experimental modal analyses fur a radial tire for passenger car under free-suspension. One is the modal analysis to obtain three-dimensional modes of tire using accelerometers and the other is the one to identify cavity resonance frequency using a pressure sensor. From the first analysis, we have obtained the three-dimensional natural modes, which makes it possible to grasp the features of the modes and to classify the vibrational modes into symmetric, non-symmetric, and antisymmetric modes in a simple way by using the experimental results. From the first and the second experimental analyses we have identified the cavity resonance frequency and its three-dimensional mode shape.

하부 구조의 고유 진동수비에 따른 돔 구조의 고유 진동 특성에 관한 연구 (A Study on Natural Vibration Characteristics of Dome Structure According to Natural Frequency Ratio of Substructure)

  • 박광섭;김윤태
    • 한국공간구조학회논문집
    • /
    • 제18권3호
    • /
    • pp.75-82
    • /
    • 2018
  • Large space structures exhibit different natural vibration characteristics depending on the aspect ratio of structures such as half-open angle. In addition, since the actual large space structure is mostly supported by the lower structure, it is expected that the natural vibration characteristics of the upper structure and the entire structure will vary depending on the lower structure. Therefore, in this study, the natural vibration characteristics of the dome structure are analyzed according to the natural frequency ratio by controlling the stiffness of the substructure. As the natural frequency of the substructure increases, the natural frequency of the whole structure increases similarly to the natural frequency of the upper structure. Vertical vibration modes dominate at $30^{\circ}$ and $45^{\circ}$, and horizontal vibration modes dominate at $60^{\circ}$ and $90^{\circ}$.

유체로 연성된 두 사각평판의 고유진동수 (Natural Frequency of Two Rectangular Plates Coupled with Fluid)

  • Jeong, Kyeong-Hoon;Park, Keun-Bae
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.389.1-389
    • /
    • 2002
  • An analytical study is presented on the hydroelastic vibration of two rectangular identical plates coupled with a bounded fluid by using the finite Fourier series expansion method. It is observed that the two contrastive modes, the so called the out-of-phase and in-phase modes. All natural frequency of the in-phase modes can be predicted well by the combination of the beam modes in the air, but the natural frequency of the out-of-phase mode cannot be estimated precisely. (omitted)

  • PDF

비고전적 감쇠시스템에서 주파수분리의 모드연관에 대한 영향 (Influence of Frequency Separation on Modal Coupling in Nonclassically Damped Systems)

  • 김정수;최기흥;최기상
    • 대한기계학회논문집
    • /
    • 제18권9호
    • /
    • pp.2245-2250
    • /
    • 1994
  • The normal coordinates of a nonclassically damped systems are coupled by nonzero off-diagonal elements of modal damping matrix. The relationship between modal coupling and the frequency separation of the natural modes is presented in this paper. Contrary to widely accepted beliefs, increasing the frequency separation of the natural modes does not neccessarily diminish the effect of modal coupling. Consequently, in the pratical engineering applications, wide frequency separation of the natural modes would not be sufficient for neglecting modal coupling.

접지면 중앙에서 수직방향 가진에 의한 타이어의 3차원 진동모드가 휠/축에 미치는 영향 (3-D Vibration Modes of the Tire in Ground Contact and Its Effects on Wheel and Axle When Excited by a Vertical Impact at the Center of Contact Patch)

  • 김용우;남진영
    • 대한기계학회논문집A
    • /
    • 제28권4호
    • /
    • pp.325-332
    • /
    • 2004
  • Tire vibration modes are known to play a key role in vehicle ride and comfort characteristics. Inputs to the tire such as impacts, rough road surface, tire nonuniformities, and tread patterns can potentially excite tire vibration. In this study, experimental modal analysis on the tire with ground contact are performed by impacting the tire in the radial direction at the center of contact patch. To investigate which modes of tire influence the vibration of wheel and axle when the tire is in contact with ground, the vibration characteristics such as frequency response functions, natural frequencies and their mode shapes from tire to wheel/axle are examined.

Free vibration characteristics of horizontally curved composite plate girder bridges

  • Wong, M.Y.;Shanmugam, N.E.;Osman, S.A.
    • Steel and Composite Structures
    • /
    • 제10권4호
    • /
    • pp.297-315
    • /
    • 2010
  • This paper is concerned with free vibration characteristics and natural frequency of horizontally curved composite plate girder bridges. Three-dimensional finite element models are developed for the girders using the software package LUSAS and analyses carried out on the models. The validity of the finite element models is first established through comparison with the corresponding results published by other researchers. Studies are then carried out to investigate the effects of total number of girders, number of cross-frames and curvature on the free vibration response of horizontally curved composite plate girder bridges. The results confirm the fact that bending modes are always coupled with torsional modes for horizontally curved bridge girder systems. The results show that the first bending mode is influenced by composite action between the concrete deck and steel beam at low subtended angle but, on the girders with larger subtended angle at the centre of curvature such influence is non-existence. The increase in the number of girders results in higher natural frequency but at a decreasing rate. The in-plane modes viz. longitudinal and arching modes are significantly influenced by composite action and number of girders. If no composite action is taken into account the number of girders has no significant effect for the in-plane modes.

접지면 중앙에서 3차원 방향의 충격 가진에 의한 타이어의 3차원 진동형이 축에 미치는 영향 (3-D Vibration Modes of the Tire in Ground Contact and Its Effects on Axle When Excited by a 3-D Impact at the Center of Contact Patch)

  • 김용우;남진영
    • 한국자동차공학회논문집
    • /
    • 제11권6호
    • /
    • pp.171-182
    • /
    • 2003
  • Tire vibration modes are known to play a key role in vehicle ride and comfort characteristics. Inputs to the tire such as impacts, rough road surface, tire nonuniformities, and tread patterns can potentially excite tire vibration. In this study, experimental modal analysis on the tire in ground contact are performed by a 3-D impact at the center of contact patch to investigate which modes of tire influence the vibration of wheel and axle. Through the experiment, the vibration transmission properties from tire to axle are examined. And we have compared the influential tire modes when the tire is excited by a vertical impact with those when excited by the 3-D impact. Additionally, the modes of ground contact tire are compared with those of the suspended tire.

자동차엔진용 고압연료 공급 파이프의 고유진동수 해석 및 진동시험 (Natural Frequency Analysis and Modal Test of Fuel Pipe for Vehicle Engine)

  • 손인수;허상범;안성진
    • 한국산업융합학회 논문집
    • /
    • 제24권4_2호
    • /
    • pp.475-480
    • /
    • 2021
  • The purpose of this study is to obtain the natural frequency of fuel supply pipes for vehicle engines through modal analysis and testing and compare the resulting values to ensure the reliability of the analysis. In other words, in this study, we obtain the unique frequency of the fuel pipe of the vehicle engine through analysis and testing and compare its results. Comparing the natural frequency obtained through analysis and testing, the first and third vibration modes obtained accurate natural frequency results of less than 1% and very similar results of less than 5% maximum error over the fourth vibration modes. These results are determined that if design changes of fuel pipes are made depending on the vehicle in the future, there will be no problem in obtaining the natural frequency of pipes that have been changed by analysis. Through future analysis and testing, durability and stability evaluation of connections of fuel supply pipes for vehicle engines will be carried out.