• Title/Summary/Keyword: Natural flow

Search Result 2,463, Processing Time 0.026 seconds

Analytical Modeling of Natural Convection in a Tall Rectangular Enclosure with Multiple Disconnected Partitions

  • Bae, Youngmin;Kim, Seong Hoon;Seo, Jae-Kwang;Kim, Young In
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.925-931
    • /
    • 2016
  • In this study, laminar natural circulation and heat transfer in a tall rectangular enclosure with disconnected vertical partitions inside were investigated. Analytical expressions were developed to predict the circulation flow rate and the average Nusselt number in a partially partitioned enclosure with isothermal side walls at different temperatures and insulated top and bottom walls. The proposed formulas are then validated against numerical results for modified Rayleigh numbers of up to $10^6$. The impacts of the governing parameters are also examined along with a discussion of the heat transfer regimes.

Natural convection of nanofluid flow between two vertical flat plates with imprecise parameter

  • Biswal, U.;Chakraverty, S.;Ojha, B.K.
    • Coupled systems mechanics
    • /
    • v.9 no.3
    • /
    • pp.219-235
    • /
    • 2020
  • Natural convection of nanofluid flow between two vertical flat plates has been analyzed in uncertain environment.Anon-Newtonian fluid SodiumAlginate (SA) as base fluid and nanoparticles ofCopper(Cu) are taken into consideration. In thepresentstudy,we have takennanoparticle volume fraction as an uncertain parameterin terms offuzzy number. Fuzzy uncertainties are controlled by r-cut and parametric concept. Homotopy PerturbationMethod (HPM) has been used to solve the governing fuzzy coupleddifferential equationsforthe titled problem.Forvalidation, presentresults are comparedwith existingresultsforsome special casesviz. crisp case andthey are foundto be ingood agreement.

The study of external flow around building using CFD (CFD를 이용한 건축물 외부유동 특성에 관한 연구)

  • Lee, Sang-Seok;Lee, Myeong-Yong;Lee, Ji-Hong;Lee, Jin-Seok;Lee, Do-Hyung;Jin, Bong-Yong
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.61-66
    • /
    • 2008
  • Recently a certain level is required in natural ventilation for improving on the 'quality' aspect in housing. It is simulated the external flow around building which affact natural ventilation using CFD. Natural ventilation is estimated on the specific household which considered topography and not considered.

  • PDF

A NUMERICAL STUDY ON MHD NATURAL CONVECTIVE HEAT TRANSFER IN AN AG-WATER NANOFLUID FILLED ENCLOSURE WITH CENTER HEATER

  • NITHYADEVI, N.;MAHALAKSHMI, T.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.21 no.4
    • /
    • pp.225-244
    • /
    • 2017
  • The natural convective nanofluid flow and heat transfer inside a square enclosure with a center heater in the presence of magnetic field has been studied numerically. The vertical walls of the enclosure are cold and the top wall is adiabatic while the bottom wall is considered with constant heat source. The governing differential equations are solved by using a finite volume method based on SIMPLE algorithm. The parametric study is performed to analyze the effect of different lengths of center heater, Hartmann numbers and Rayleigh numbers. The heater effectiveness and temperature distribution are examined. The effect of all pertinent parameters on streamlines, isotherms, velocity profiles and average Nusselt numbers are presented. It is found that heat transfer increases with the increase of heater length, whereas it decreases with the increase of magnetic field effect. Furthermore, it is found that the value of Nusselt number depends strongly upon the Hartmann number for the increasing values of Rayleigh number.

Elaboration and characterization of fiber-reinforced self-consolidating repair mortar containing natural perlite powder

  • Benyahia, A.;Ghrici, M.;Mansour, M. Said;Omran, A.
    • Advances in concrete construction
    • /
    • v.5 no.1
    • /
    • pp.1-15
    • /
    • 2017
  • This research project aimed at evaluating experimentally the effect of natural perlite powder as an alternative supplementary cementing material (SCM) on the performance of fiber reinforced self-consolidating repair mortars (FR-SCRMs). For this purpose, four FR-SCRMs mixes incorporating 0%, 10%, 20%, and 30% of natural perlite powder as cement replacements were prepared. The evaluation was based on fresh (slump flow, flow time, and unit weight), hardened (air-dry unit weight, compressive and flexural strengths, dynamic modulus of elasticity), and durability (water absorption test) performances. The results reveal that structural repair mortars confronting the performance requirements of class R4 materials (European Standard EN 1504-3) could be designed using 10%, 20%, and 30% of perlite powder as cement substitutions. Bonding results between repair mortars containing perlite powder and old concrete substrate investigated by the slant shear test showed good interlocking justifying the effectiveness of these produced mortars.

Preliminary Studies on Double-Diffusive Natural Convection During Physical Vapor Transport Crystal Growth of Hg2Br2 for the Spaceflight Experiments

  • Ha, Sung Ho;Kim, Geug Tae
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.289-300
    • /
    • 2019
  • We have conducted a preliminary numerical analysis to understand the effects of double-diffusive convection on the molar flux at the crystal region during the growth of mercurous bromide ($Hg_2Br_2$) crystals in 1 g and microgravity (${\mu}g$) conditions. It was found that the total molar fluxes decay first-order exponentially with the aspect ratio (AR, transport length-to-width), $1{\leq}AR{\leq}10$. With increasing the aspect ratio of the horizontal enclosure from AR = 1 up to Ar = 10, the convection flow field shifts to the advective-diffusion mode and the flow structures become stable. Therefore, altering the aspect ratio of the enclosure allows one to control the effect of the double diffusive natural convection. Moreover, microgravity environments less than $10^{-2}g$ make the effect of double-diffusive natural convection much reduced so that the convection mode could be switched over the advective-diffusion mode.

A numerical study of vortex shedding and lock-on behind a square cylinder in a laminar flow (층류유동에서 사각실린더 주위의 와류쉐딩과 공진현상에 관한 수치해석적 연구)

  • Jeong, Yeong-Jong;Jo, Sang-Hyeon;Choe, Hae-Cheon;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.5
    • /
    • pp.573-583
    • /
    • 1998
  • Effects of the oscillating incoming flow on vortex shedding and lock-on behind a square cylinder are investigated using numerical simulations at a Reynolds number of 100. Vortex shedding occurred at low forcing frequencies of the incoming flow similar to the natural vortex shedding. As the forcing frequency further increases, the shedding frequency decreases to the half of the forcing freqnency. For a sufficiently large frequency, vortex shedding returns to the natural vortex shedding irrespective of the forcing amplitude. Also, the lock-on region becomes wider with higher forcing amplitudes. The phase diagram between the drag and lift shows a simple periodic behavior in the lock-on region, while a complicated periodic phase relation is observed when there is no lock-on.

Combustion and Emission Characteristics in CNG Engine with SCV (SCV를 장착한 CNG 엔진의 연소 및 배출가스 특성)

  • 김진영;박원옥;공태원;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.1-6
    • /
    • 2003
  • Natural gas is one of the promising alternative fuels because of the abundant deposits and the cleanness of emission gas. CNG has a lot of merits except lower burning speed has a slow disadvantage. One way to overcome the disadvantage is to raise a turbulence intensity. We give various intake for changing turbulence intensity in the cylinder by three kinds of swirl control valve with a way to raise a turbulence intensity. In the present study, a $1.8\ell$ conventional gasoline engine is modified to use a CNG as a fuel instead of gasoline. We try to virify combustion and emission characteristics in each engine parameters. Parameters of experimentation are equivalence ratio, spark timing and intake flow change. The results of this study are as swirl flows. In the case of adding swirl flow, burning speed and torque are increased. But NOx and THC concentration are increased a little respectively.

ANALYTIC EXPRESSION OF HYDRAULIC FALL IN THE FREE SURFACE FLOW OF A TWO-LAYER FLUID OVER A BUMP

  • Park, Jeong-Whan;Hong, Bum-Il;Ha, Sung-Nam
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.2
    • /
    • pp.479-490
    • /
    • 1997
  • We consider long nonlinear waves in the two-layer flow of an inviscid and incompressible fluid bounded above by a free surface and below by a rigid boundary. The flow is forced by a bump on the bottom. The derivation of the forced KdV equation fails when the density ratio h and the depth ratio $\rho$ yields a condition $1 + h\rho = (2-h)((1-h)^2 + 4\rho h)^{1/2}$. To overcome this difficulty we derive a forced modified KdV equation by a refined asymptotic method. Numerical solutions are given and hydraulic fall solution of a two layer fluid is expressed analytically in the case that derivation of the forced KdV (FKdV) equation fails.

  • PDF

Hazard analysis and monitoring for debris flow based on intelligent fuzzy detection

  • Chen, Tim;Kuo, D.;Chen, J.C.Y.
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.1
    • /
    • pp.59-67
    • /
    • 2020
  • This study aims to develop the fuzzy risk assessment model of the debris flow to verify the accuracy of risk assessment in order to help related organizations reduce losses caused by landslides. In this study, actual cases of landslides that occurred are utilized as the database. The established models help us assess the occurrence of debris flows using computed indicators, and to verify the model errors. In addition, comparisons are made between the models to determine the best one to use in practical applications. The results prove that the risk assessment model systems are quite suitable for debris flow risk assessment. The reproduction consequences of highlight point discovery are shown in highlight guide coordinating toward discover steady and coordinating component focuses and effectively identified utilizing these two systems, by examining the variety in the distinguished highlights and the element coordinating.