• 제목/요약/키워드: Natural emission

검색결과 638건 처리시간 0.032초

천연가스 내 미량의 수소함량이 가스터빈의 연소특성에 미치는 영향 (Effect of low H2 content in natural gas on the Combustion Characteristics of Gas Turbine)

  • 이민철;박세익;김성철;윤지수;주성필;윤영빈
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2013년도 제46회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.109-110
    • /
    • 2013
  • This paper describes gas turbine combustion characteristics of synthetic natural gas which contains a small amount hydrogen content. By conducting ambient pressure high temperature combustion test at gas turbine relevant combustor geometry, the combustion characteristics such as combustion instability, NOx and CO emission, temperatures at turbine inlet, nozzle and dump plane, and flame structure from high speed OH chemiluminescence images were investigated when changing hydrogen content from zero to 5%. From the results, qualitative and quantitative relationships are derived between key aspects of combustion performance, notably NOx/CO emission and combustion instability. Natural gas containing hydrogen up to 5% does not show significant difference in view of all combustion characteristics except combustion instability. Only up to 1% hydrogen addition could not change the pressure fluctuation and phase gas between fluctuations of pressure and heat release. From the results, it can be concluded that synthetic national gas which contains 1% of hydrogen can be guaranteed for the stable and reliable operation of natural gas firing gas turbine.

  • PDF

완전용입 풀의 진동을 이용한 형상측정에 관한 연구 (A Study on Weld Pool Oscillation for Pool Geometry Measurement)

  • 유중돈
    • Journal of Welding and Joining
    • /
    • 제11권2호
    • /
    • pp.62-73
    • /
    • 1993
  • Weld pool oscillation for the full-penetration GTA welding process was investigated for its possible application to weld penetration control through theoretical modeling and experiment. Energy method was used to estimate the natural frequency of the molten pool having the physically-acceptable weld geometry and oscillation modes. An unique experimental system was built which had the data acquisiton and video capabilities so that the pool oscillation signals and molten pool surfaces could be monitored continuously. Pool oscillation was detected through arc voltage and arc light emission simultaneously. The signal from arc light emission showed good coherence with that from arc voltage, and arc light generated the higher quality signal. The molten pool was found to oscillate in different oscillation modes based on the travel speed and weld geometry. The natural frequency estimated from the theoretical model agreed reasonably well with the experimental results.

  • PDF

유기농업의 온실가스 감축효과 (Effects of Organic Farming on Greenhouse Gas Emission Reduction)

  • 김창길;정학균;김용규
    • 한국기후변화학회지
    • /
    • 제7권3호
    • /
    • pp.335-339
    • /
    • 2016
  • The purpose of this study is to analyze effects of greenhouse gas reduction in organic agriculture. To accomplish the objective of the study, a field survey was conducted. Based on the field survey results, LCA method was used to estimate the greenhouse gas emission. The farmer survey and LCA estimation data were provided by The Foundation of Agricultural Technology Commercialization and Transfer. The GHG estimation results showed that GHG emission of organic farming is less by 10.6~89.3% when compared with the conventional farming. In addition, the economic value of greenhouse gas reduction in organic farming amounts to 1,097 million won. Based on major findings, in response to national greenhouse gas reduction target, it is needed to expand organic farming, supporting organic farmers' income.

수소-천연가스엔진에서 밸브오버랩 감소가 배기특성에 미치는 영향 (Effect of Reduced Valve Overlap on Emission Characteristics of Hydrogen-Compressed Natural Gas Engine)

  • 이성원;임기훈;박철웅;최영;김창기
    • 대한기계학회논문집B
    • /
    • 제39권1호
    • /
    • pp.21-27
    • /
    • 2015
  • 현행 배기가스규제인 유로6을 대응하기 위해선 질소산화물과 메탄의 배출량을 크게 저감시켜야 하는 실정이다. 본 연구에서는 부분부하운전조건에서 밸브오버랩 감소가 수소-천연가스엔진의 연소 및 배기특성에 미치는 영향을 살펴보았다. 각 연료와 기존캠 및 밸브오버랩이 감소된 변경캠에 대하여 연소 및 배기특성을 분석하였다. 실험결과 변경캠을 사용하였을 때 열효율이 감소하고 연료유량이 증가하였다. 열효율 감소로 인하여 메탄과 이산화탄소의 배출량은 증가하였다. 희박한 운전조건에서 질소산화물 배출량은 기존캠 대비 감소하였다. 동일한 연료 및 운전조건에서는 효율과 배기특성에 악영향을 미치는 것을 알 수 있었다.

플럭스챔버에 의한 매립지표면 메탄의 배출량 측정과 분석 (Surface Flux Measurements of Methane from Lamdfills by Closed Chamber Technique and its Validation)

  • 김득수;장영기;전의찬
    • 한국대기환경학회지
    • /
    • 제16권5호
    • /
    • pp.499-509
    • /
    • 2000
  • Next to carbon dioxide, methane is the second largest contributor to global warming among anthropogenic greenhouse gases. Methane is emitted into the atmosphere from both natural and anthropogenic sources. Natural sources include wetlands, termites, wildries, ocean and freshwater. Anthropogenic sources include landfill, natural gas and oil production, and agriculture. These manmade sources account for about 70% of total global methane emissions; and among these, landfill accounts for approximately 10% of total manmade emissions. Solid waste landfills produce methane as bacteria decompose organic wastes under anaerobic conditions. Methane accounts for approximately 45 to 50 percent of landfill gas, while carbon dioxide and small quantities of other gases comprise the remaining to 50 to 55 percent. Using the closed enclosure technique, surface emission fluxes of methane from the selected landfill sites were measured. These data were used to estimate national methane emission rate from domestic landfills. During the three different periods, flux experiments were conducted at the sites from June 30 through December 26, 1999. The chamber technique employed for these experiments was validated in situ. Samples were collected directly by on-site flux chamber and analyzed for the variation of methane concentration by gas chromatography equipped with FID. Surface emission rates of methane were found out to vary with space and time. Significant seasonal variation was observed during the experimental period. Methane emission rates were estimated to be 64.5$\pm$54.5mgCH$_4$/$m^2$/hr from Kimpo landifll site. 357.4$\pm$68.9mgCH$_4$/$m^2$/hr and 8.1$\pm$12.4mgCH$_4$/$m^2$/hr at KwanJu(managed and unmanaged), 472.7$\pm$1056mgCH$_4$/$m^2$/hr at JonJu, and 482.4$\pm$1140 mgCH$_4$/$m^2$/hr at KunSan. These measurement data were used for the extrapolation of national methane emission rate based on 1997 national solid waste data. The results were compared to those derived by theoretical first decay model suggested by IPCC guidelines.

  • PDF

SCV를 장착한 CNG 엔진의 연소 및 배출가스 특성 (Combustion and Emission Characteristics in CNG Engine with SCV)

  • 김진영;박원옥;공태원;하종률
    • 한국자동차공학회논문집
    • /
    • 제11권3호
    • /
    • pp.1-6
    • /
    • 2003
  • Natural gas is one of the promising alternative fuels because of the abundant deposits and the cleanness of emission gas. CNG has a lot of merits except lower burning speed has a slow disadvantage. One way to overcome the disadvantage is to raise a turbulence intensity. We give various intake for changing turbulence intensity in the cylinder by three kinds of swirl control valve with a way to raise a turbulence intensity. In the present study, a $1.8\ell$ conventional gasoline engine is modified to use a CNG as a fuel instead of gasoline. We try to virify combustion and emission characteristics in each engine parameters. Parameters of experimentation are equivalence ratio, spark timing and intake flow change. The results of this study are as swirl flows. In the case of adding swirl flow, burning speed and torque are increased. But NOx and THC concentration are increased a little respectively.

A Comparative Study on the Performance and Emission Analysis of a Dual Fuelled Diesel Engine with Karanja Biodiesel and Natural Gas

  • Singh, Ashish Kumar;Kumar, Naveen;Amardeep, Amardeep;Kumar, Parvesh
    • International Journal of Advanced Culture Technology
    • /
    • 제4권1호
    • /
    • pp.10-18
    • /
    • 2016
  • In the present study, a single cylinder four stroke dual fuel diesel engine was tested to investigate the performance and emission characteristics of various test fuels. The engine was tested in dual fuel mode using diesel and Karanja biodiesel blends as pilot fuel along with Natural gas as primary fuel with a constant gas flow rate under different loading conditions. From the experimentation it was found that smoke opacity and oxides of nitrogen (NOx) are at low level for all the prepared test fuels in dual fuel mode but the emissions of carbon monoxide (CO), carbon dioxide ($CO_2$) and hydrocarbon (HC) were found higher. In comparison to diesel fuel, by increasing the blend percentage different emission parameters are found to be reduced. At different loading conditions all the test fuels show poor performance in dual fuel mode of operation when compared with single mode of operation with diesel and biodiesel. With increase in gas flow rates, except (NOx) and smoke emissions, the other emission parameters like CO, HC and $CO_2$ values increased for all test fuels. Again, all blended fuels showed lower performance compared to diesel. The maximum pilot fuel savings for diesel was found decreasing with the increase in karanja biodiesel. From the present work it may be concluded that Karanja biodiesel with Natural gas in dual mode can be can used as promising alternative for diesel with some required engine modifications and further research must be carried out to minimize the emissions of CO, HC and $CO_2$.

Micromechanical 시험법과 음향방출을 이용한 Flax 와 Hemp섬유 강화된 Polypropylene 복합재료의 계면 물성 평가 (Interfacial Evaluation of Flax and Hemp Fibers/Polypropylene Composites Using Micromechanical Test and Acoustic Emission)

  • 트란콩손;황병선;박종만
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.42-45
    • /
    • 2005
  • Interfacial evaluation of various combinations of both Flax and Hemp fibers/polypropylene were performed by using micromechanical test and nondestructive acoustic emission (AE). It can be because interfacial adhesion between the natural fiber surface and matrix plays an important role in controlling the overall mechanical properties of polymer composite materials by transferring the stress from the matrix to the fiber. It is necessary to characterize the interphase and the level of adhesion to understand the performance of the composites properly. Microfailure mechanism of single Flax fiber bundles were investigated using the combination of single fiber tensile test and nondestructive acoustic emission. Microfailure modes of the different natural fiber/polypropylene systems were observed using optical microscope and determined indirectly by AE and their FFT analysis.

  • PDF

여름철 참나무속의 이소프렌 배출속도 비교에 관한 연구 (A Comparison Study on Isoprene Emission Rates from Oak Trees in Summer)

  • 김조천;김기준;홍지형;선우영;임수길
    • 한국대기환경학회지
    • /
    • 제20권1호
    • /
    • pp.111-118
    • /
    • 2004
  • In order to compare the NVOC (Natural Volatile Organic Compound) emission rates from oak trees, the emission rates of isoprene were quantitatively measured in situ based on tree species and region. As a result, the emission rates from Quercus serrata T. were found to be 1000 times greate. than those from Quercus acutissima C. However, the emission rates at the Chili and Gumsung mountain sites did not show any significant differences in summer. Cuvette tests using four different oak species also supported that there was a tremendous difference in emission rates between Quercus serrata T. and Quercus acutissima C. It was found that the emission rates from the trees were highest on the order of Quercus serrata T., Quercus aliena B., Quercus acutissima C. and Quercus variabilis B.

압축비 변화에 따른 HCNG 엔진의 배기 특성 (Emission Characteristics of HCNG Engine with Compression Ratio Change)

  • 이성원;임기훈;박철웅;최영;김창기
    • 한국자동차공학회논문집
    • /
    • 제21권4호
    • /
    • pp.106-112
    • /
    • 2013
  • Compression ratio is an important factor affecting engine performance and emission characteristics since thermal efficiency of spark ignition engine can be theoretically improved by increasing compression ratio. In order to evaluate the effect of compression ratio change in HCNG engine, natural gas engine was employed using HCNG30 (CNG 70 vol%, hydrogen 30 vol%). Combustion and emission characteristics of CNG and HCNG fuel was analyzed with respect to the change of compression ratio at each operating condition. The results showed that thermal efficiency improved and $CH_4$, $CO_2$ emission decreased with the increase in compression ratio while $NO_x$ emissions were decreased at a certain excess air ratio condition. Higher thermal efficiency and further reduction of exhaust emissions can be achieved by the increase of compression ratio and the retard of spark timing.