• Title/Summary/Keyword: Natural dissipation

Search Result 110, Processing Time 0.031 seconds

Comparison of Pregnant Women's Mechanical Energy between the Period of Pregnancy and Postpartum (임신 기간 및 출산 후의 임산부 보행의 역학적 에너지 변화)

  • Hah, Chong-Ku;Yi, Jae-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.4
    • /
    • pp.387-393
    • /
    • 2010
  • The purpose of this study was to compare pregnant women's gait parameters and mechanical energies caused by changes in hormone levels and anatomical features such as body mass, body-mass distribution, joint laxity, and musculo-tendinous strength from pregnancy to postpartum. Ten subjects (height: $161{\pm}6.5cm$, mass: $62.7{\pm}10.4\;kg$, $66.4{\pm}9.3\;kg$, $68.4{\pm}7.7\;kg$, $57.2{\pm}7.7\;kg$) participated in the four times experiments (the first, middle, last term and after birth) and walked ten trials at a self-selected pace without shoes. The gait motions were captured with Qualisys system and gait parameters were calculated with Visual-3D. Pregnant women's gait velocities were decreased during the pregnancy periods, but increased after birth. Stride width and cycle time were increased during pregnancy, but decreased after birth. Thigh energy (77.4%) was greater than shank energy (19.06%) or feet (3.54%) about total energy of the lower limbs. Their feet (Left R2=0.881, Right R2=0.852) and shank (Left R2=0.318, Right R2=0.226) energies were significantly increased (positive correlation), but double limb stance time (DLST, R2=0.679) and body total energy (R2=0.138) were decreased (negative correlation) for their velocities. These differences suggest that thigh segment may be a dominant segment among lower limbs, and have something to do with gait velocities. Further studies should investigate joint power and joint work to find energy dissipation or absorption from pregnancy period to postpartum.

Dyeability and Color Fastness of Optimal Reactive Dyes According to Linen Fabrics (린넨 직물의 번수에 따른 최적 반응성 염료의 염색성 및 염색견뢰도 연구)

  • Ssanghee Kim;Hyesun Hwang;Hyejun Yoon;Euijin Shim
    • Fashion & Textile Research Journal
    • /
    • v.24 no.6
    • /
    • pp.801-811
    • /
    • 2022
  • In this study, we constructed a database of dyeing concentrations of all reactive dyes used for dyeing linen according to the thickness of the linen fabric and attempted to improve the reproducibility of the dyeing process for the commercialization of linen fabric materials. Linen fabric is a natural cellulose material that is comfortable and suitable for eco-friendly trends. It is a typical summer material with excellent breathability and thermal conductivity, quick moisture absorption and dissipation, and a cool touch. Dyeability and fastness were evaluated depending on the thickness of the linen fabric using a monochlorotriazine (MCT) reactive dye and bifunctional yellow, red, and blue dyes. All three colors of the MCT reactive dye and bifunctional dyes exhibited a darker shade as the fiber thickness of the marker increased. Fastness to washing was excellent at grades 4-5 or higher, regardless of the color of the dye and the number of linen fabrics. Although some color-fastness differences were noted, with the color change occurring most frequently with blue color, the fastness variations with dye type were mostly similar. The results of this study are expected to facilitate the selection of reactive dyes according to the thickness of the linen fabric based on the basic data from the laboratory, which will aid in the mass production of linen fabric and benefit the fashion industry.

Analysis of axial compression performance of BFRRAC-filled square steel tubular column

  • Xianggang Zhang;Jixiang Niu;Wenlong Shen;Dapeng Deng;Yajun Huang
    • Steel and Composite Structures
    • /
    • v.49 no.4
    • /
    • pp.457-471
    • /
    • 2023
  • To make up for the performance weaknesses of recycled aggregate concrete (RAC), expand the application range of RAC, and alleviate the environmental problems caused by excessive exploitation of natural coarse aggregates (NCA), this study proposes a basalt fiber-reinforced recycled aggregate concrete (BFRRAC)-filled square steel tubular columns that combines two modification methods of steel tube and fiber, which may greatly enhance the mechanical properties of RAC. The axial compression performance for BFRRAC-filled square steel tubular columns was reported during this study. Seven specimens with different replacement ratios of recycled coarse aggregate (RCA), length-diameter ratios, along with basalt fiber (BF) contents were designed as well as fabricated for performing axial compression test. For each specimen, the whole failure process as well as mode of specimen were discovered, subsequently the load-axial displacement curve has obtained, after which the mechanical properties was explained. A finite element analysis model for specimens under axial compression was then established. Subsequently, based on this model, the factors affecting axial compression performance for BFRRAC-filled square steel tubes were extended and analyzed, after which the corresponding design suggestion was proposed. The results show that in the columns with length-diameter ratios of 5 and 8, bulging failure was presented, and the RAC was severely crushed at the bulging area of the specimen. The replacement ratio of RCA as well as BF content little affected specimen's peak load (less than 5%). As the content of BF enhanced from 0 kg/m3 to 4 kg/m3, the dissipation factor and ductility coefficients increased by 10.2% and 5.6%, respectively, with a wide range.

Experimental and numerical investigation on the seismic behavior of the sector lead rubber damper

  • Xin Xu;Yun Zhou;Zhang Yan Chen;Song Wang;Ke Jiang
    • Earthquakes and Structures
    • /
    • v.26 no.3
    • /
    • pp.203-218
    • /
    • 2024
  • Beam-column joints in the frame structure are at high risk of brittle shear failure which would lead to significant residual deformation and even the collapse of the structure during an earthquake. In order to improve the damage issue and enhance the recoverability of the beam-column joints, a sector lead rubber damper (SLRD) has been developed. The SLRD can increase the bearing capacity and energy dissipation capacity, and also demonstrating recoverability of seismic performance following cyclic loading. In this paper, the hysteretic behavior of SLRD was experimentally investigated in terms of the regular hysteretic behavior, large deformation behavior and fatigue behavior. Furthermore, a parametric analysis was performed to study the influence of the primary design parameters on the hysteretic behavior of SLRD. The results show that SLRD resist the exerted loading through the shear capacity of both rubber parts coupled with the lead cores in the pre-yielding stage of lead cores. In the post-yielding phase, it is only the rubber parts of the SLRD that provide the shear capacity while the lead cores primarily dissipate the energy through shear deformation. The SLRD possesses a robust capacity for large deformation and can sustain hysteretic behavior when subjected to a loading rotation angle of 1/7 (equivalent to 200% shear strain of the rubber component). Furthermore, it demonstrates excellent fatigue resistance, with a degradation of critical behavior indices by no more than 15% in comparison to initial values even after 30 cycles. As for the designing practice of SLRD, it is recommended to adopt the double lead core scheme, along with a rubber material having the lowest possible shear modulus while meeting the desired bearing capacity and a thickness ratio of 0.4 to 0.5 for the thin steel plate.

Large-scale cyclic test on frame-supported-transfer-slab reinforced concrete structure retrofitted by sector lead rubber dampers

  • Xin Xu;Yun Zhou;Zhang Yan Chen;Da yang Wang;Ke Jiang;Song Wang
    • Earthquakes and Structures
    • /
    • v.26 no.5
    • /
    • pp.383-400
    • /
    • 2024
  • For a conventionally repaired frame-supported-transfer-slab (FSTS) reinforced concrete (RC) structure, both the transfer slab and the beam-to-column and transfer slab-to-column joints remain vulnerable to secondary earthquakes. Aimed at improving the seismic performance of a damaged FSTS RC structure, an innovative retrofitting scheme is proposed, which adopts the sector lead rubber dampers (SLRDs) at joints after the damaged FSTS RC structure is repaired by conventional approaches. In this paper, a series of quasi-static cyclic tests was conducted on a large-scale retrofitted FSTS RC structure. The seismic performance was evaluated and the key test results, including deformation characteristics, damage pattern, hysteretic behaviour, bearing capacity and strains on key components, were reported in detail. The test results indicated that the SLRDs started to dissipate energy under the service level earthquake, and thus prevented damages on the beam-to-column and transfer slab-to-column joints during the secondary earthquakes and shifted the plastic hinges away from the beam ends. The retrofitting scheme of using SLRDs also achieved the seismic design concept of 'strong joint, weak component'. The FSTS RC structure retrofitted by the SLRDs could recover more than 85% bearing capacity of its undamaged counterpart. The hysteresis curves were featured by the inverse "S" shape, indicating good bearing capacity and hysteresis performance. The deformation capacity of the damaged FSTS RC structure retrofitted by the SLRDs met the corresponding codified requirements for the case of the maximum considered earthquake, as set out in the Chinese seismic design code. The stability of the FSTS RC structure retrofitted by the SLRDs, which was revealed by the developed stains of the RC frame and transfer slab, was improved compared with the undamaged FSTS RC structure.

Earthquake Simulation Tests of A 1:5 Scale Gravity Load Designed 3-Story Reinforced Concrete Frame (중력하중 설계된 1:5 축소 3층 철근콘크리트 골조의 지진모의실험)

  • 이한선;우성우
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.241-252
    • /
    • 1998
  • The objective of the research stated herein is to observe the actual responses of a low-rise nonseismic moment-resisting reinforced concrete frame subjected to varied levels of earthquake ground motions. First, the reduction scale for the model was determined as 1 : 5 considering the capacity of the shaking table to be used and the model was manufactured according to the similitude law. This model was, then, subjected to the shaking table motions simulating Taft N21E component earthquake ground motions, whose peak ground accelations (PGAs) were modified to 0.12g, 0.2g, 0.3g, and 0.4g. The lateral accelerations and displacements at each story and local deformations at the critical reginos of the structure were measured. The base shear was measured by using self-made load cells. Before and after each earthquake simulation test, free vibration tests were performed to find the change in the natural period and damping ratio of the model. The test data on the global and local behaviors are interpreted. The model showed the linear elastic behavior under the Taft N21E motion with the PGA if 0.12g, which represents the design earthquake in Korea. The maximum base shear was 1.8tf, approximately 4.7 times the design base shear. The model revealed fairly good resistance to the higher level of earthquake simulation tests. The main components of its resistance to the high level of earthquakes appeared to be 1) the high overstrength, 2) the elongation of the fundamental period, and 3) the minor energy dissipation by inelastic deformations. The drifts of the model under these tests were approximately within the allowable limit.

Improvement of Functional Assessment for Riverine Wetlands using HGM Approach (HGM 적용을 통한 하도습지의 기능평가 제고 방안 연구)

  • Yeum, Junghun;Kim, Taesung
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.378-385
    • /
    • 2016
  • This study aims to suggest the framework of functional assessment on lotic area based on HGM(Hydrogeomorphic) approach targeting Wetland Protected Areas which are in the type of river channel, and to set up the fundamental data as a reference wetland. A total of 10 factors in terms of hydrology, biogeochemistry, plant habitat and animal habitat was analyzed based on the original approach of HGM and each Functional Capacity Index(FCI) of those factors was calculated. As the result of the modified FCI analysis, Damyang riverine wetland which is with artificial river bank had high values in the variables of area ratio of actual vegetation in the foreland, the number of plant per area and the area ratio of Salix spp., and those values were highly reflected on the factors of Nutrient Cycling(947,668.00), Species Richness and Maintain Characteristic Plant Communites(6.39) and Maintain Spatial Structure of Habitat(11.00). The Hanbando wetland which is keeping the natural bank had higher values in the variables of structural scale and species diversity, and the those values were highly reflected on the factors of Energy Dissipation(17,805.16), Subsurface Storage of Water(0.54), Removal of Imported Elements and Compounds(103,052.73), Maintain Characteristic Detrital Biomass(2.31), Maintenance of Interspersion and Connectivity (6.50), Species Diversity of Benthic macro-invertebrates(1.60) and Species Diversity of Vertebrate & Species Number of Other Animals(2.52/ 151.50), compared to the Damyang Riverine Wetland.

β-lapachone-Induced Apoptosis of Human Gastric Carcinoma AGS Cells Is Caspase-Dependent and Regulated by the PI3K/Akt Pathway

  • Yu, Hai Yang;Kim, Sung Ok;Jin, Cheng-Yun;Kim, Gi-Young;Kim, Wun-Jae;Yoo, Young Hyun;Choi, Yung Hyun
    • Biomolecules & Therapeutics
    • /
    • v.22 no.3
    • /
    • pp.184-192
    • /
    • 2014
  • ${\beta}$-lapachone is a naturally occurring quinone that selectively induces apoptotic cell death in a variety of human cancer cells in vitro and in vivo; however, its mechanism of action needs to be further elaborated. In this study, we investigated the effects of ${\beta}$-lapachone on the induction of apoptosis in human gastric carcinoma AGS cells. ${\beta}$-lapachone significantly inhibited cellular proliferation, and some typical apoptotic characteristics such as chromatin condensation and an increase in the population of sub-G1 hypodiploid cells were observed in ${\beta}$-lapachone-treated AGS cells. Treatment with ${\beta}$-lapachone caused mitochondrial transmembrane potential dissipation, stimulated the mitochondria-mediated intrinsic apoptotic pathway, as indicated by caspase-9 activation, cytochrome c release, Bcl-2 downregulation and Bax upregulation, as well as death receptor-mediated extrinsic apoptotic pathway, as indicated by activation of caspase-8 and truncation of Bid. This process was accompanied by activation of caspase-3 and concomitant with cleavage of poly(ADP-ribose) polymerase. The general caspase inhibitor, z-VAD-fmk, significantly abolished ${\beta}$-lapachone-induced cell death and inhibited growth. Further analysis demonstrated that the induction of apoptosis by ${\beta}$-lapachone was accompanied by inactivation of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. The PI3K inhibitor LY29004 significantly increased ${\beta}$-lapachone-induced apoptosis and growth inhibition. Taken together, these findings indicate that the apoptotic activity of ${\beta}$-lapachone is probably regulated by a caspase-dependent cascade through activation of both intrinsic and extrinsic signaling pathways, and that inhibition of the PI3K/Akt signaling may contribute to ${\beta}$-lapachone-mediated AGS cell growth inhibition and apoptosis induction.

Vibration Reduction Effect and Structural Behavior Analysis for Column Member Reinforced with Vibration Non-transmissible Material (진동절연재로 보강된 기둥부재의 진동저감효과 및 구조적 거동분석)

  • Kim, Jin-Ho;Yi, Na-Hyun;Hur, Jin-Ho;Kim, Hee-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.94-103
    • /
    • 2016
  • For elevated railway station on which track is connected with superstructure of station, structural vibration level and structure-borne-noise level has exceeded the reference level due to structural characteristics which transmits vibration directly. Therefore, existing elevated railway station is in need of economical and effective vibration reduction method which enable train service without interruption. In this study, structural vibration non-transmissible system which is applied to vibroisolating material for column member is developed to reduce vibration. That system is cut covering material of the column section using water-jet method and is installed with vibroisolating material on cut section. To verify vibration reduction effect and structural performance for structural vibration non-transmissible system, impact hammer test and cyclic lateral load test are performed for 1/4 scale test specimens. It is observed that natural period which means vibration response characteristics is shifted, and damping ratio is increased about 15~30% which means that system is effective to reduce structural vibration through vibration test. Also load-displacement relation and stiffness change rate of the columns are examined, and it is shown that ductility and energy dissipation capacity is increased. From test results, it is found that vibration non-transmissible system which is applied to column member enable to maintains structural function.

Impact Tests and Numerical Simulations of Sandwich Concrete Panels for Modular Outer Shell of LNG Tank (모듈형 LNG 저장탱크 외조를 구성하는 샌드위치 콘크리트 패널의 충돌실험 및 해석)

  • Lee, Gye-Hee;Kim, Eun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.5
    • /
    • pp.333-340
    • /
    • 2019
  • Tests using a middle velocity propulsion impact machine (MVPIM) were performed to verify the impact resistance capability of sandwich concrete panels (SCP) in a modular liquefied natural gas (LNG) outer tank, and numerical models were constructed and analyzed. $2{\times}2m$ specimens with plain sectional characteristics and specimens including a joint section were used. A 51 kg missile was accelerated above 45 m/s and impacted to have the design code kinetic energy. Impact tests were performed twice according to the design code and once for the doubled impact speed. The numerical models for simulating impact behaviors were created by LS-DYNA. The external steel plate and filled concrete of the panel were modeled as solid elements, the studs as beam elements, and the steel plates as elasto-plastic material with fractures; the CSCM material model was used for concrete. The front plate deformations demonstrated good agreement with those of other tests. However the rear plate deformations were less. In the doubled speed test for the plain section specimen, the missile punctured both plates; however, the front plate was only fractured in the numerical analysis. The impact energy of the missile was transferred to the filled concrete in the numerical analysis.