• Title/Summary/Keyword: Natural degrading polymer film

Search Result 2, Processing Time 0.017 seconds

Effect of Covering the Soil with Naturally Degrading Polymer Film on the Benthic Macroinvertebrates Community Structure in Paddy Field (자연분해비닐 논토양 피복이 저서성 대형무척추동물의 군집구조에 미치는 영향)

  • Park, Jin-Young;Kwon, Soon-Jik;Nam, Hong-Sik;Kang, Chung-Kil;Park, Jong-Kyun
    • Korean journal of applied entomology
    • /
    • v.50 no.2
    • /
    • pp.83-96
    • /
    • 2011
  • This study was conducted to investigate the influence of natural degrading polymer film covering in rice paddies on the benthic macroinvertebrate community structure in Dangsu-dong, Suwon, Gyeonggi-do from May 2009 to September 2009. We compared 5 treatments: golden apple snail farming (GF), natural degrading polymer film + organic farming (NOF), natural degrading polymer film + chemical farming (NCF), conventional farming (CF), and no fertilization (NF) as the control. The total number of species was highest in NOF followed by GF, NF, NCF, and CF. The total number of individuals was highest in NOF followed by NCF, CF, NF, and GF. The Dominance index (DI) ranged from 0.43 to 0.95. The highest dominance index was in GF followed by NCF, NF=CF, and NOF. The species diversity index (H') for each experimental plot ranged from 0.49 to 2.93. The average species diversity index was highest in NOF followed by NF, GF, CF, and NCF. After the natural degrading polymer film covered the paddies, the benthic macroinvertebrates tended to recover, but leeches and aquatic beetles increased. Mollusca and Annelida, which are sensitive taxa, decreased in both species and individual numbers after the soil was covered with the natural degrading polymer film. The number of species tended to recover. However, the number of individuals continued to decrease.d, especially individuals. Since then, the number of species tended to recover. However, the number of individuals decreased.

Polymer Film-Based Screening and Isolation of Polylactic Acid (PLA)-Degrading Microorganisms

  • Kim, Mi Yeon;Kim, Changman;Moon, Jungheun;Heo, Jinhee;Jung, Sokhee P.;Kim, Jung Rae
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.342-349
    • /
    • 2017
  • Polylactic acid (PLA) has been highlighted as an alternative renewable polymer for the replacement of petroleum-based plastic materials, and is considered to be biodegradable. On the other hand, the biodegradation of PLA by terminal degraders, such as microorganisms, requires a lengthy period in the natural environment, and its mechanism is not completely understood. PLA biodegradation studies have been conducted using mainly undefined mixed cultures, but only a few bacterial strains have been isolated and examined. For further characterization of PLA biodegradation, in this study, the PLA-degrading bacteria from digester sludge were isolated and identified using a polymer film-based screening method. The enrichment of sludge on PLA granules was conducted with the serial transference of a subculture into fresh media for 40 days, and the attached biofilm was inoculated on a PLA film on an agar plate. 3D optical microscopy showed that the isolates physically degraded the PLA film due to bacterial degradation. 16S rRNA gene sequencing identified the microbial colonies to be Pseudomonas sp. MYK1 and Bacillus sp. MYK2. The two isolates exhibited significantly higher specific gas production rates from PLA biodegradation compared with that of the initial sludge inoculum.