• Title/Summary/Keyword: Natural Shedding

Search Result 89, Processing Time 0.03 seconds

Nutrienr cyclings in mongolian oak(quercus mongolica) forest (신갈나무 숲의 營養監類 循環)

  • Kwak, Young-Se;Kim, Joon-Ho
    • The Korean Journal of Ecology
    • /
    • v.15 no.1
    • /
    • pp.35-46
    • /
    • 1992
  • To elucidate nutrient cyclings such as nitrogen, phosphorus and potassium in mongolian oak(quercus mongolica) forest, nutrient elements of precipitation, throughfall, outflow, soil, various plant organ and litter were determined at mt.nambyeongsan, pyeongchang-gun, gangwon province in central part of korean peninsula. Annual precipitation input, throughfall and outflow of nutrientswere 10.3, 8.6 and 4.2 kg/ha for the N, 0.11, 0.24 and 0.02 kg/ha for the Pand 1.3, 10.9 and 1.2 kg/ha for the K, respectively. Inseasonal changes of nutrient concentrations, N, P and Kconcentrations which were rich in young leaves decreased steadily until autumn and decreased abruptly during autumnal yellowing. The standing N, P and K concent were 565, 37 and 257 kg/ha for standing phytomass of overstory, 33, 3 and 18 kg/ha for understory, 132, 3.6 and 14 kg/ha for litter on ground including deadwood and 20, 752, 14 and 420 kg/ha for the soil, respectively. The amounts of annual uptake, reture and retain were 174.2, 57.2, 117.2 kg/ha for the N, 9.9, 3.5, 6.4 kg/ha for the P and 73.2, 30.3, 42.9 kg/ha for the K, respectively. Reabsorption efficiency, ratio of the nutrient amount reabsorbed into woody organs to that in the mature leaves before shedding, was 71%(or 99.8 kg/ha in the amount), 69%(or 5.1 kg/ha) and 57%(or 33.1% kg/ha) and recycling coeffciently made with which the large amount of nutrients is absorbed through roots during growing season(UPTAKE) and reasorbed from the leaves before shedding(RETAIN) but the small amount of nutrients is returned through litterfall(RETURN).

  • PDF

Viral load and rebound in children with coronavirus disease 2019 during the first outbreak in Daegu city

  • Chu, Mi Ae;Jang, Yoon Young;Lee, Dong Won;Kim, Sung Hoon;Ryoo, Namhee;Park, Sunggyun;Lee, Jae Hee;Chung, Hai Lee
    • Clinical and Experimental Pediatrics
    • /
    • v.64 no.12
    • /
    • pp.652-660
    • /
    • 2021
  • Background: Viral load and shedding duration are highly associated with the transmission of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. However, limited studies have reported on viral load or shedding in children and adolescents infected with sudden acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Purpose: This study aimed to investigate the natural course of viral load in asymptomatic or mild pediatric cases. Methods: Thirty-one children (<18 years) with confirmed SARS-CoV-2 infection were hospitalized and enrolled in this study. Viral loads were evaluated in nasopharyngeal swab samples using real-time reverse transcription polymerase chain reaction (E, RdRp, N genes). cycle threshold (Ct) values were measured when patients met the clinical criteria to be released from quarantine. Results: The mean age of the patients was 9.8 years, 18 (58%) had mild disease, and 13 (42%) were asymptomatic. Most children were infected by adult family members, most commonly by their mothers. The most common symptoms were fever and sputum (26%), followed by cough and runny nose. Nine patients (29%) had a high or intermediate viral load (Ct value≤30) when they had no clinical symptoms. Viral load showed no difference between symptomatic and asymptomatic patients. Viral rebounds were found in 15 cases (48%), which contributed to prolonged viral detection. The mean duration of viral detection was 25.6 days. Viral loads were significantly lower in patients with viral rebounds than in those with no rebound (E, P=0.003; RdRp, P=0.01; N, P=0.02). Conclusion: Our study showed that many pediatric patients with coronavirus disease 2019 (COVID-19) experienced viral rebound and showed viral detection for more than 3 weeks. Further studies are needed to investigate the relationship between viral rebound and infectiousness in COVID-19.

Protection of Specific-pathogen-free (Spf) Foals from Severe Equine Herpesvirus Type-1 (Ehv-1) Infection Following Immunization with Non-infectious L-particles

  • Mohd Lila Mohd-Azmi;John Gibson;Frazer Rixon;Lauchlan, John-Mc;Field, Hugh-John
    • Journal of Microbiology
    • /
    • v.40 no.3
    • /
    • pp.183-192
    • /
    • 2002
  • Cells infected With equine herpesvirus type-1 (EHV-1) Produced both infectious and non-infectious Virus-related particles. Compared to the whole virion, non-infectious particles termed L-particles were deter-mined to lack 150 kDa protein, commonly known as nucleocapsid protein. The potential of L-particles to induce immune responses was studied in mice and foals. Intranasal immunization with L-particles or whole virions induced poor IgG antibody responses in mice. Interestingly, despite the poor antibody response, the conferred immunity protected the host from challenge infections. This was indicated by a significant reduction in virus titers in line with recovery towards normal body weight. Subsequently, the test on the usefulness of L-particles as immunizing agents was extended to foals. Immunization of specific-pathogen-free (SPF) foals resulted in similar results. As determined by a complement-fixing-antibody test (CFT), foals seroconverted when they were immunized either with inactivated L-particles or whole virions via intramuscular (i.m.) injections. The presence of the antibody correlated with the degree of protection. Beyond day 1 post challenge infection (p.i.), there was no virus shedding in the nasal mucus of foals immunized with whole EHV-1 virions. Virus shedding was observed in foals Immunized with L-particles but limited to days 6 to 8 p.i. only. In contrast, extended vim shedding was observed in non-immunized foals and it was well beyond day 14 p.i. Viremia was not detected for more than four days except in non-immunized foals. Immunization in mice via intranasal (i.n.) conferred good protection. However, compared to the i.n. route, a greater degree of protection was obtained in foals following immunization via i.m. route. Despite variation in the degree of protection due to different routes of immunization in the two animal species, our results have established significant evidence that immunization with L-particles confers protection in the natural host. It is suggested that non-infectious L-particles should be used as immunizing agents for vaccination of horses against EHV-1 infection.

The Development of Vibration Exciter Using Strain Displacement Estimator for Flow Resonance (스트레인 게이지 변위 추정기를 사용한 유동공진 가진기 개발)

  • Choi, Jae-hyuck;Nam, Yoon-su
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.125-132
    • /
    • 2001
  • Heat dissipation technology using flow resonant phenomenon is a kind of new concept in heat transfer area. A vibration exciter is needed to generate air turbulence which has the natural shedding frequency of heat system. A mechanical vibrating device for the air flow oscillation is introduced, which is driven by a moving coil actuator. An analytical dynamic model for this mechanical vibration exciter is presented and its' validity is verified by the comparison with experimental data. Values of some unknown system parameters in the analytic model are estimated through the system identification approach. Based on this mathematical model, the vibration exciter using strain displacement estimator is developed. And in the experiment, the feedback control is used. During the experimental verification phase, it turns out the high modal resonant characteristics of vibrating plate are the major barrier against obtaining a high bandwidth vibration exciter.

  • PDF

Design and Evaluation of a Vibration Exciter for the Flow Resonance (유동공진을 위한 가진기 설계 및 평가)

  • Nam, Yoon-Su;Choi, Jae-Hyuck
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.6
    • /
    • pp.141-147
    • /
    • 2001
  • A heat dissipation technology using flow resonant phenomenon is a kind of new concept in heat transfer area. A vibration exciter is needed to generate an air turbulence which has the natural shedding frequency of a heat system. A mechanical vibrating device for the air flow oscillation is introduced, which is driven by a moving coil actuator. An analytical dynamic model for this mechanical vibration exciter is presented and its validity is verified by the comparison with experimental data. Values of some unko주 system parameters in the analytic model are estimated through the system identification approach. based on this mathematical model, a high bandwidth vibration exciter is designed using feedback control. During the experimental verification phased, it turns out the high frequency modal resonant characteristics of vibrating plate are the major barrier against obtaining a high bandwidth vibration exciter.

  • PDF

The Motion Characteristics of a Marine Riser in Regular Wave Condition (규칙파중 석유시추보호관의 운동특성에 관한 연구)

  • 김용철;이판묵
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.49-56
    • /
    • 1987
  • The dynamic behaviour of a marine riser was studied theoretically and experimentally. In linear analysis, the natural frequencies and mode shapes of the riser were obtained from the experiment and they were found to be in good agreement with theoretical results by using a simple asymptotic formula. In nonlinear ananlysis including viscous drag and large displacement, a numerical-perturbation technique based on the derived linear asymptotic solutions is used to predict the displacements and stresses of the riser in harmonic motion. These results were also compared with experimental data and found to be in general in good agreement.

  • PDF

Numerical flow computation around aeroelastic 3D square cylinder using inflow turbulence

  • Kataoka, Hiroto;Mizuno, Minoru
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.379-392
    • /
    • 2002
  • Numerical flow computations around an aeroelastic 3D square cylinder immersed in the turbulent boundary layer are shown. Present computational code can be characterized by three numerical aspects which are 1) the method of artificial compressibility is adopted for the incompressible flow computations, 2) the domain decomposition technique is used to get better grid point distributions, and 3) to achieve the conservation law both in time and space when the flow is computed a with moving and transformed grid, the time derivatives of metrics are evaluated using the time-and-space volume. To provide time-dependant inflow boundary conditions satisfying prescribed time-averaged velocity profiles, a convenient way for generating inflow turbulence is proposed. The square cylinder is modeled as a 4-lumped-mass system and it vibrates with two-degree of freedom of heaving motion. Those blocks which surround the cylinder are deformed according to the cylinder's motion. Vigorous oscillations occur as the vortex shedding frequency approaches cylinder's natural frequencies.

PPF/Adaptive PPF Control of Vortex-induced Vibration of Composite Beam with Rigid Cylinder (PPF/Adaptive PPF 제어기를 이용한 실린더를 부착한 복합재 보의 와류 유발 진동 제어)

  • Chang, Young-Hwan;Kim, Do-Hyung;Yang, Seung-Man;Park, Ki-Yeon;Rew, Keun-Ho;Lee, In
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.147-150
    • /
    • 2002
  • For lightweight and flexible structures, it is important to suppress the vibrations induced by interactions between fluid and structures. This paper presents the PPF/Adaptive control of the vortex-induced vibration of composite beam with rigid cylinder in which the fluid force is considered as an external excitation on the structure. For the problems considered here, the excitation frequency (vortex-shedding frequency) is assumed to be equal to the natural frequency of the structure. A pair of piezoceramic devices attached bottom of the composite structure was used as actuators. Simulation and experiment were carried out with the designed controller and effectiveness of the PPF/Adaptive PPF control was verified by both experimental and simulation results.

  • PDF

A Study on Mathematical Modeling of Forcing Function for the Piping Vibration of Petrochemical Plant Design (플랜트 설계 시 배관진동을 유발하는 가진 함수의 수학적 모델링)

  • 민선규;최명진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.591-595
    • /
    • 1997
  • In analysis of piping vibration of petrochemical plant, the forcing functions mainly depend upon the equipment working mechanism and vibration resources in the piping systems. In general, harmonic function is used for the system with rotary equipments. Mechanical driving frequencies, wave functions, and response spectrum are used for reciprocating compressors, surge vibration of long transfer piping, and seismic/wind vibration, respectively. In this study, for the spray injection case inside the pipe, forcing function was modeled, in which two different fluids are distributed uniformly. To confirm the results, the scheme used for the forcing function was applied for real piping system. The vibration mode of the real system was consistent with the 4th mode obtained by simulation using the forcing function formulated in this study.

  • PDF

A Simulation of Forcing Function for the Piping Vibration in Petrochemical Plants (석유화학 플랜트에서 배관 가진 함수의 시뮬레이션에 관한 연구)

  • 민선규;최명진;김경훈
    • Journal of the Korea Society for Simulation
    • /
    • v.10 no.4
    • /
    • pp.1-10
    • /
    • 2001
  • For the simulation of piping vibrations in petrochemical plants, forcing functions mainly depend upon the equipment working mechanism and vibration resources in the piping systems. In general, harmonic function is used to simulate rotary equipment. Mechanical driving frequencies, wave functions, and response spectrum are used to simulate reciprocating compressors, surge vibration of long transfer piping, and seismic/wind vibration, respectively. In this study, the general suggestions for forcing functions were reviewed and proposed the forcing function to simulate the spray injection system inside the pipe in which two different fluids are distributed uniformly. To confirm the results, the scheme was applied for a real piping system. The vibration mode of the real system was consistent with the 4th mode (26.725 Hz) obtained by simulation using the forcing function presented in this study.

  • PDF