• Title/Summary/Keyword: Natural Fiber Reinforced Composite

Search Result 107, Processing Time 0.028 seconds

Effect of agglomerated zirconia-toughened mullite on the mechanical properties of giant cane fiber mat epoxy laminated composites

  • Sahu, Pruthwiraj;Parida, Sambit Kumar;Mantry, Sisir
    • Structural Engineering and Mechanics
    • /
    • v.70 no.2
    • /
    • pp.233-243
    • /
    • 2019
  • This paper depicts the development and characterizations of laminated composites made with cellulosic giant cane (Arundinaria gigantea) fiber mats and epoxy resin. Zirconia-toughened mullite (ZTM) is used as a filler material in the laminated composite which was prepared from sillimanite through plasma processing technique. The mechanical characterizations of this composite have been carried out as per ASTM standards to evaluate its usability as a structural material. The effects of varying weight percentages of the filler and two different fiber orientations namely, angle-ply [$+45^{\circ}/-45^{\circ}/+45^{\circ}$] and balanced cross-ply [$0^{\circ}/90^{\circ}/0^{\circ}$] on the physical and mechanical properties such as density, microhardness, impact strength, tensile strength and interlaminar shear strength of the layered composite specimens have been investigated. The study indicates that the inclusion of zirconia-toughened mullite in the composite laminate as filler improves its mechanical properties. Moreover, the use of giant cane fiber mat in the laminate is more eco-friendly than the synthetic fibers. This research also helps in generating additional data to enrich the repository of natural fiber reinforced laminated composites.

A COMPARATIVE STUDY ON THE FRACTURE STRENGTH AND MARGINAL FITNESS OF FIBER-REINFORCED COMPOSITE BRIDGE (섬유강화형 복합레진브릿지의 파절강도 및 변연적합도에 관한 연구)

  • Choi Ho-Kuen;Shin Sang-Wan;Lim Ho-Nam;Suh Kuyu-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.5
    • /
    • pp.526-546
    • /
    • 2001
  • Fiber-reinforced composite(FRC) was developed as a structural component for dental appliances such as prosthodontic framework. FRC provides the potential for fabrication of a metal-free, excellent esthetic prostheses. It has demonstrated success as a result of its simple fabrication, natural colour, and marginal integrity, and fracture resistance of veneering composite resin and the FRC material. Although it has lots of merits, clinical and objective data are insufficient. The purpose of this study was to evaluate the fracture strength and the marginal fitness of fiber reinforced composite bridge in the posterior region for clinical application. Sixteen bridges of each group. $Targis/Vectris^{(R)}$, $Sculpture-Fibrekor^{(R)}$, and In-Ceram, were fabricated. All specimens were cemented with Panavia 21 to the master dies. Strength evaluation was accomplished by a universal testing machine (Instron). The marginal fitness was measured by using the stereoscope (${\times}50$). The results were as follows. : 1. The fracture strength according to the materials was significantly decreased in order In-Ceram($238.81{\pm}82$), Targis Vectris($176.25{\pm}18.93$), Sculpture-Fibrekor($120.35{\pm}20.08$) bridges. 2. FRC resin bridges were not completely fractured, while In-Ceram bridges were completely fractured in the pontic joint. 3. The marginal accuracy was significantly decreased in order Targis/Vectris ($60.71{\mu}m$), Sculpture-Fibrekor($73.10{\mu}m$) In-ceram Bridge ($83.81{\mu}m$). 4. The fitness of occlusal sites had a lower value than the marginal sites(P<0.001), and the marginal gaps of inner site of the pontic were greater than that of outer sites of the pontic. Fiber reinforced composite bridges are new, esthetic prosthesis and can be clinically used in anterior regions and short span bridges. However, caution must be exercised when extrapolating laboratory data to the clinical situation because there are no long term clinical data regarding the overall success of the FRC.

  • PDF

Mechanical Properties of Cellulose-filled Epoxy Hybrid Composites Reinforced with Alkali-treated Hemp Fiber (염기 처리 대마 섬유로 강화된 셀룰로오스 충전 에폭시 하이브리드 복합재의 기계적 물성)

  • Anand, P.;Anbumalar, V.
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.46-55
    • /
    • 2015
  • There is a limit for deforestation in order to keep the environmental cycle undisturbed. The heart of the paper is to replace the wood to a maximum extent to obtain a sustainable environment. This research aims at new natural composites in which treated hemp fiber used as reinforcement, synthetic cellulose used as particulate to improve the adhesion between matrix - fiber interface and Epoxy LY556 acted as matrix fabricated by hand layup technique. The density, water absorption, tensile properties, impact strength, hardness, flexural properties and compressive properties have been evaluated under ASTM standards and compare the results with existing materials such as wood, aluminium, etc., The composite hemp fiber reinforced polymer (HFRP) could be exploited as an effective replacement for wood and it would be suitable for automotive applications by comparing results.

Effects of E-beam treatment on the interfacial and mechanical properties of henequen/polypropylene composites

  • Cho, Dong-Hwan;Lee, Hyun-Seok;Han, Seong-Ok;Drzal, Lawrence T.
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.315-334
    • /
    • 2007
  • In the present study, chopped henequen natural fibers without and with surface modification by electron beam (E-beam) treatment were incorporated into a polypropylene matrix. Prior to composite fabrication, a bundle of raw henequen fibers were treated at various E-beam intensities from 10 kGy to 500 kGy. The effect of E-beam intensity on the interfacial, mechanical and thermal properties of randomly oriented henequen/polypropylene composites with the fiber contents of 40 vol% was investigated focusing on the interfacial shear strength, flexural and tensile properties, dynamic mechanical properties, thermal stability, and fracture behavior. Each characteristic of the material strongly depended on the E-beam intensity irradiated, showing an increasing or decreasing effect. The present study demonstrates that henequen fiber surfaces can be modified successfully with an appropriate dosage of electron beam and use of a low E-beam intensity of 10 kGy results in the improvement of the interfacial properties, flexural properties, tensile properties, dynamic mechanical properties and thermal stability of henequen/polypropylene composites.

Analysis of Thermomechanical Properties Considering the Thermal Expansion Anisotropy of Membrane-Type Fiber-Reinforced Composite Material (멤브레인 형 섬유강화 복합재료의 열팽창 이방성을 고려한 열 기계적 특성 분석)

  • Jeong, Yeon-Jae;Kim, Hee-Tae;Kim, Jeong-Dae;Oh, Hoon-Gyu;Kim, Yong-Tai;Park, Seong-Bo;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.1
    • /
    • pp.17-23
    • /
    • 2021
  • The membrane-type Liquefied Natural Gas (LNG) cargo tank is equipped with a double barrier to seal the LNG, of which the secondary barrier serves to prevent LNG leakage and mainly uses fiber-reinforced composite materials. However, the composite materials have thermal expansion anisotropy, which deteriorates shape distortion and mechanical performance due to repeated thermal loads caused by temperature changes between cryogenic and ambient during the unloading of LNG. Therefore, in this study, the longitudinal thermal expansion characteristics of the composite materials were obtained using a vertical thermo-mechanical analyzer, and the elastic modulus was obtained through the tensile test for each temperature to perform thermal load analysis for each direction. This is considered that it is useful to secure reliability from the viewpoint of the design of materials for a LNG cargo hold.

Processing and mechanical property evaluation of maize fiber reinforced green composites

  • Dauda, Mohammed;Yoshiba, Masayuki;Miura, Kazuhiro;Takahashi, Satoru
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.335-347
    • /
    • 2007
  • Green composites composed of long maize fibers and poly $\varepsilon$-caprolactone (PCL) biodegradable polyester matrix were manufactured by the thermo-mechanical processing termed as 'Sequential Molding and Forming Process' that was developed previously by the authors' research group. A variety of processing parameters such as fiber area fraction, molding temperature and forming pressure were systematically controlled and their influence on the tensile properties was investigated. It was revealed that both tensile strength and elastic modulus of the composites increase steadily depending on the increase in fiber area fraction, suggesting a general conformity to the rule of mixtures (ROM), particularly up to 55% fiber area fraction. The improvement in tensile properties was found to be closely related to the good interfacial adhesion between the fiber and polymer matrix, and was observed to be more pronounced under the optimum processing condition of $130^{\circ}C$ molding temperature and 10 MPa forming pressure. However, processing out of the optimum condition results in a deterioration in properties, mostly fiber and/or matrix degradation together with their interfacial defect as a consequence of the thermal or mechanical damages. On the basis of microstructural observation, the cause of strength degradation and its countermeasure to provide a feasible composite design are discussed in relation to the optimized process conditions.

Study on the Development of friction Material Using I-glass Fiber Reinforced Composites (유리섬유 강화 복합재료를 이용한 마찰재 개발에 관한 연구)

  • 김영운;최문호;서상하;김부안;문창권
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.49-55
    • /
    • 2000
  • This study has been investigated to apply fiber reinforced composites instead of asbestos as a friction material. the reinforced used was E-glass fiber and binder resin was phenol having good mechanical properties and heat resistance. And it has been also investigated the effect of molding conditions and some additives such and carbon black, alumina and rubber powder in E-glass fiber/phenol resin composite on the friction on the friction and wear characteristics. As a result, it was found that the molding conditions of E-glass fiber/phenol resin composites for friction materials had to be different from those of phenol resin and was found that the wear rate of E-glass fiber/phenol resin composites added alumina powder was higher than of composites added carbon black in the same wear distance. And it was found that friction coefficient of E-glass/phenol resin composites added carbon black was decreased and that of the composites added the powder of natural rubber and ABS rubber were increased compared to the composites.

  • PDF

Effect of Spew fillet on Failure Strength Evaluation in Adhesive Bonded Joints involving Natural Fiber Reinforced Composites (접착제 접합된 자연섬유강화 복합재료의 파괴강도 특성에 미치는 접착제 필릿의 영향)

  • Kim, Yeon-Jik;Yun, Ho-Cheol;Im, Jae-Gyu
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.262-264
    • /
    • 2005
  • This paper is concerned with a fracture strength study of composite adhesive lap joints. The tests were carried out on specimen joints manufactured hybrid stacked joints such as the polyester and bamboo natural fiber layer. The main objective of the work was to test the fracture strength using hybrid fiber composites with a polyester and bamboo natural fiber layer adjacent to the spew fillet of adhesive bonded joints and hybrid stacked joints. The results are presented using tensile-shear strength graph and finite element analysis. The failure mechanisms are discussed in order to explain that spew fillet at the end of the overlap reduces greatly the adhesive shear and effects the tensile-shear strength in hybrid stacked joints.

  • PDF

Numerical and experimental investigation for damage detection in FRP composite plates using support vector machine algorithm

  • Shyamala, Prashanth;Mondal, Subhajit;Chakraborty, Sushanta
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.2
    • /
    • pp.243-260
    • /
    • 2018
  • Detection of damages in fibre reinforced plastic (FRP) composite structures is important from the safety and serviceability point of view. Usually, damage is realized as a local reduction of stiffness and if dynamic responses of the structure are sensitive enough to such changes in stiffness, then a well posed inverse problem can provide an efficient solution to the damage detection problem. Usually, such inverse problems are solved within the framework of pattern recognition. Support Vector Machine (SVM) Algorithm is one such methodology, which minimizes the weighted differences between the experimentally observed dynamic responses and those computed using the finite element model- by optimizing appropriately chosen parameters, such as stiffness. A damage detection strategy is hereby proposed using SVM which perform stepwise by first locating and then determining the severity of the damage. The SVM algorithm uses simulations of only a limited number of damage scenarios and trains the algorithm in such a way so as to detect damages at unknown locations by recognizing the pattern of changes in dynamic responses. A rectangular fiber reinforced plastic composite plate has been investigated both numerically and experimentally to observe the efficiency of the SVM algorithm for damage detection. Experimentally determined modal responses, such as natural frequencies and mode shapes are used as observable parameters. The results are encouraging since a high percentage of damage cases have been successfully determined using the proposed algorithm.

Vibration Analysis and Critical Speeds of Rotating Polar Orthoropic Disks (극직교 이방성 회전원판의 진동특성 및 임계속도)

  • Koo, Kyo-Nam;Han, Jae-Heung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.337-340
    • /
    • 2005
  • Rotating annular disks are widely used in data storage devices such as CDs, DVDs(digital versatile disks), and HDs(hard disks). Higher data transfer rate in data storage disks could not be achieved by polycarbonate disks in the present market. The problem can be solved by applying the fiber-reinforce composite materials to the disks. In this paper, an application of composite materials to rotating disks is proposed to increase the critical speed. Dynamic equation is formulated in order to calculate the natural frequency and critical speed for rotating composite by the Galerkin method. The results show that the radially reinforced disk is more effective in increasing critical speed than the circumferentially reinforced disk.

  • PDF