• Title/Summary/Keyword: Natural Fiber Composite

Search Result 232, Processing Time 0.033 seconds

Rheological Properties During Mixing and Thermal Properties of Polypropylene/Natural Fiber Composites: II. Effects of A Compatibilizer (폴리프로필렌-천연섬유 복합재료의 혼합시 유변학적 및 열적 특성: II. 상용화제의 영향)

  • Kim, Sam-Jung;Yoo, Chong Sun;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.10 no.1
    • /
    • pp.23-29
    • /
    • 2009
  • We investigated effects of a compatibilizer on the rheological properties during mixing and thermal properties of polypropylene (PP)-natural fiber composites. Two types of natural fibers (cotton fiber and wood fiber) were compared. maleic anhydride grafted PP was used for a compatibilizer. On increasing the amounts of the compatibilizer, the torque values of composites were increased, regardless of the kind of fibers. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) results showed a slight increase in the degree of crystallinity with adding the compaibilizing agent, while the effects of the kind of fibers were marginal. It may be considered, however, the cotton fiber exhibits better interaction with PP-g-MAH than the natural fiber based on the rheographs, DSC, and XRD results.

  • PDF

Vibration Analysis of [αββγααβ]r Type Laminated Composite Plates Using Invariant and Correction Factor (불변량(不變量)과 수정계수(修正係數)를 사용(使用)한 [αββγααβ]r 적층부합판(積層復合板)의 진동해석(振動解析))

  • Hong, Chang-Woo;Sim, Do-Sik;Kim, Nam-Yun;Jung, Young-Hwa
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.131-137
    • /
    • 1996
  • For a large scale civil and architectural structures, mainly steel, concrete and aluminum have been used and weight and corrosion of materials became a major concern. Designing with composite materials is very much complicated. Simple classical theory may yield good results for selecting "initial" sections for preliminary design. D. H. Kim proposed to use the quasi-isotropic constants by Tsai for the preliminary design of the composite primary structures for the civil construction. Also he made simple equation using correction factor. In this paper, the simple formulas developed by D. H. Kim to obtain "exact" values of the natural frequencies of [ABBCAAB]r laminate are compared with Whitney's equations. Also natural frequencies of the plate with varying aspect ratios and reinforcing fiber orientations, are compared with natural frequencies of bean. This work can be a guideline to obtain data in many other cases.

  • PDF

Preparation and Properties of Regenerated Composite Fibers made from Styela Clava Tunics/PVA Blending( II) (미더덕 껍질과 PVA를 혼합한 재료로부터 제조한 복합섬유의 제법과 성질(II))

  • Jung, Young-Jin;An, Byung-Jae;Kim, Hong-Sung;Choi, Hae-Wook;Lee, Eon-Pil;Lee, Jae-Ho;Kim, Han-Do;Park, Soo-Min;Kim, Sung-Dong
    • Textile Coloration and Finishing
    • /
    • v.20 no.3
    • /
    • pp.31-38
    • /
    • 2008
  • Regenerated composite fibers were prepared from solution of styela clava tunics(SC) and poly vinyl alchol(PVA) using N-methylmorpholine-N-oxide(NMMO)/water(87/13)(wt%/wt%) as a solvent by dry jet-wet spinning. Structure and physical properties of regenerated composite fibers were investigated through birefrngence, x-ray diffratograms, tenacity, fibrillation and SEM. Optimal blend ratio of SC/PVA for mechanical properties of composite fibers was 70/30 and total weight was 4wt% concentrations in NMMO/$H_2O$ solvent system. Crystallinity index of composite fibers were decreased as the PVA contents increased. Fibrillation of $10{\sim}20wt%$ PVA blended fibers were occurred less than pure SC fiber. Shape of composite fibers were a circle cross section within 10wt% PVA content. But the cross section of fibers were changed as crushed flat with the PVA contents increased.

Investigation of the Effect of Seaweed Nanofibers in Jute Fiber-reinforced Composites as an Additive (해초 나노섬유가 황마섬유 강화 복합재료의 기계적 물성에 미치는 영향)

  • Kim, Jae-Cheol;Lee, Dong-Woo;Song, Jung-Il
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.398-403
    • /
    • 2018
  • Recently, environmental pollution caused by plastic waste, ecosystem disturbance of micro-plastics and human body accumulation are becoming big problems. In order to replace the traditional plastic, eco-friendly resin and natural fiber-based composite materials have been developed, but they have a disadvantage that their mechanical properties are significantly lower than those of synthetic fiber-based composites. In this study, eco - friendly nanofiber was extracted from seaweed and used as an additive in order to improve the mechanical properties of jute fiber-reinforced composites. Through the hand lay-up process, the composites were fabricated, and it was confirmed that the nanofiber was effective in improving the mechanical properties of natural fiber composites through tensile, bending and drop weight impact tests.

Injectable Hydrogel as an Artificial Nucleus Pulposus in a Degenerative Intervertebral Disc (Injectable Hydrogel을 이용한 인공 Nucleus Pulposus의 제조)

  • Park, Jin-Hyun
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.13-16
    • /
    • 2002
  • The Intervertebral disc is a composite structure made up of the nucleus pulposus (NP) core surrounded by the multi-layered fibers of the annulus fibrosis (AF)[1]. Water is drawn into the NP by the presence of hydrophilic proteins called proteoglycans [2]. The AF, with successive layers oriented in alternating directions, surrounds the NP. These layers are placed under tension as the NP absorbs water and swells [3]. (omitted)

  • PDF

Shear performance of an innovative UHPFRC deck of composite bridge with coarse aggregate

  • Qi, Jianan;Wanga, Jingquan;Feng, Yu
    • Advances in concrete construction
    • /
    • v.7 no.4
    • /
    • pp.219-229
    • /
    • 2019
  • This paper presents an experimental study on the structural performance of an innovative ultra-high performance fiber reinforced concrete (UHPFRC) deck with coarse aggregate of composite bridge under shear force. Test parameters included curing method and shear span-to-height ratio. Test results indicated that more short fine cracks developed beside the existing cracks due to the randomly dispersed fibers, resulting in re-distributing and homogenizing of the concrete stress beside cracks and allowing for the occurrence of more cracks with small spacing compared to normal strength concrete beams. Curing methods, incorporating steam curing and natural curing, did not have obvious effect on the nominal bending cracking strength and the ultimate strength of the test specimens. Shear reinforcement need not be provided for UHPFRC decks with a fiber volume fraction of 2%. UHPFRC decks showed superior load resistance ability after the appearance of cracks and excellent post-cracking deformability. Lastly, the current shear provisions were evaluated by the test results.

A Study on the Mechanical Behavior of Biomimetic Fiber-Reinforced Composites under Pressure Loads (압력하중 하에서 생체모방 섬유강화 복합재의 기계적 거동 연구)

  • Lee, Jinho;Jo, Hyun-Seok;Kim, Myungsoo
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.50-55
    • /
    • 2019
  • In this study, we investigated the effect of fiber alignment in helicoidal structure on the mechanical properties of biomimetic fiber-reinforced composites. Using finite element analysis, circular biomimetic fiber composites were designed and studied. Various amounts of pressure loads were applied to a surface of the composites, and then bending and failure behaviors of the composites were analyzed. The results showed various failure morphologies according to the orientation of the fibers, and it turned out that the fiber alignment in helicoidal structure significantly improved the bending strength of the composite under pressure loading. This was because the fiber alignment in various directions for each layer dispersed effectively the fracture energy from the external load into multiple directions.

Vibration Control of a Composite Plate with Piezoelectric Sensor and Actuator (압전센서와 액츄에이터를 이용한 복합재 평판의 진동제어)

  • 권대규;유기호;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.207-210
    • /
    • 2002
  • This paper is concerned with the experiments on the active vibration control of a plate with piezoceramic sensors and actuators. The natural frequencies of the composite plate featured by a piezo-film sensor and piezo-ceramic actuator are calculated by using the modal analysis method. Modal coordinates are introduced to obtain the state equations of the structural system. Six natural frequencies were considered in the modelling, because robust control theory which has inherent robustness to structured uncertainty is adopted to suppress the transients vibrations of a glass fiber reinforced(GFR) composite beam. A robust controller satisfying the nominal performance and robust performance is designed using robust theory based on the structured singular value. Simulations were carried out with the designed controller and effectiveness of the robust control strategy was verified by results.

  • PDF

Optimal Ply Design of Laminated Composite Cantilever plate Considering Vibration (진동을 고려한 복합적층 외팔평판의 최적적층설계)

  • Gu, K.M.;Noh, Y.H.;Kim, D.Y.;Hong, D.K.;Ahn, C.W.;Han, G.J.;Park, H.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1660-1665
    • /
    • 2003
  • On this study, we improved the efficiency applying algorithm that is repeatedly using orthogonal array in discrete design space and filling a defect of gradient method in continuous design space. we showed optimal ply angle that maximized 1st natural frequency of CFRP laminated composite cantilever plate by each aspect ratio. A finite element analysis on the CFRP laminated composite cantilever plate using orthogonal array is carried out, and the results are compared with those obtained by modal testing.

  • PDF

Optimal Ply Design of Laminated Composite Plate with a Hole Considering Vibration (진동을 고려한 원공복합적층판의 최적적층설계)

  • 홍도관;김동영;최경호;안찬우
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.6
    • /
    • pp.423-429
    • /
    • 2003
  • On this study. we improved the efficiency applying algorithm that is repeatedly using table of orthogonal array in discrete design space and filling a defect of gradient method in continuous design space. we showed optimal ply angle that maximized 1st natural frequency of CFRP laminated composite plate without a hole and with a hole by each aspect ratio. In the case of CFRP laminated composite plate without a hole, we confirmed the reliance and efficiency of algorithm in comparison with the result of optimization achievement repeatedly using statistical table of orthogonal array of experimental design and the BFGS optimal design method.