• Title/Summary/Keyword: Natural Energy

Search Result 3,727, Processing Time 0.036 seconds

Acoustic Enhancement of Solid-Liquid Phase Change Heat Transfer (음향 흐름에 의한 고-액 상변화 열 전달의 촉진)

  • 박설현;오율권
    • Journal of Energy Engineering
    • /
    • v.11 no.3
    • /
    • pp.262-268
    • /
    • 2002
  • The present paper investigated the effect of ultrasonic vibrations on the melting process of phase-change materials (PCM). Furthermore, the present study considered constant heat-flux boundary condition, whereas many of the previous researches had adopted constant wall-temperature condition. The results of the present study revealed that ultrasonic vibrations accompanied the effects like acoustic streaming, cavitation, and thermally-oscillating flow. Such effects are a prime mechanism in the overall melting process when ultrasonic vibrations are applied. They speed up the melting process as much as 2.5 times, compared with the result of natural melting. Also, energy can be saved by applying ultrasonic vibrations to the natural melting. In addition, temperature and Nusselt numbers over time provided a conclusive evidence of the important role of ultrasonic vibrations on the melting phenomena.

Vibration-based damage detection in beams using genetic algorithm

  • Kim, Jeong-Tae;Park, Jae-Hyung;Yoon, Han-Sam;Yi, Jin-Hak
    • Smart Structures and Systems
    • /
    • v.3 no.3
    • /
    • pp.263-280
    • /
    • 2007
  • In this paper, an improved GA-based damage detection algorithm using a set of combined modal features is proposed. Firstly, a new GA-based damage detection algorithm is formulated for beam-type structures. A schematic of the GA-based damage detection algorithm is designed and objective functions using several modal features are selected for the algorithm. Secondly, experimental modal tests are performed on free-free beams. Modal features such as natural frequency, mode shape, and modal strain energy are experimentally measured before and after damage in the test beams. Finally, damage detection exercises are performed on the test beam to evaluate the feasibility of the proposed method. Experimental results show that the damage detection is the most accurate when frequency changes combined with modal strain-energy changes are used as the modal features for the proposed method.

Determination of Alpha Defect Center in the Nature Using EPR Spectroscopy

  • Cho, Young-Hwan;Hyun, Sung-Pil;Pilsoo Hahn
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.5 no.1
    • /
    • pp.13-18
    • /
    • 2001
  • Natural alpha radiation produced a stable defect center to certain minerals. Electron Paramagnetic Resonance(EPR) spectroscopy is a powerful tool f3r quantifying this defect center. EPR method has been applied to trace alpha-radiation effect around the uranium ore deposit. The results show that EPR technique can be used to measure rapidly and nondestructively the defect center produced by natural alpha radiation. In general, a good correlation was achieved between defect center concentration and actinide elements(U, Th). These results imply that the concentration of defect center is dependent on the alpha radiation dose over long time scale.

  • PDF

A Study on the Performance of Natural Ventilation of Solar Chimney Using Stack Effect (연돌 효과를 이용한 태양열 굴뚝의 자연환기 성능에 관한 연구)

  • Cho, S.W.;Lee, J.Y.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.2
    • /
    • pp.35-43
    • /
    • 2001
  • The results of numerical simulation on the performance of a solar chimney system in building are described. The inside surface temperature of four walls within the solar chimney arc calculated with solar radiation and outdoor temperature in summer. The air within the solar chimney is heated by conduction, convection and radiation. Air temperature distribution from the bottom to the top and outlet air temperature can be obtained by solving energy balance equation. Since the buoyance or stack effect is affected by temperature difference between the bottom and the top within the solar chimney. It is evaluated using inlet and outlet temperatures. It is expected that natural ventilation by the solar chimney of witch the height is 7.8m and the cross sectional area is $4.93m^2$ can provide about $6400m^3/h$ on sunny day.

  • PDF

Free vibration and buckling analysis of the impacted hybrid composite beams

  • Ergun, Emin;Yilmaz, Yasin;Callioglu, Hasan
    • Structural Engineering and Mechanics
    • /
    • v.59 no.6
    • /
    • pp.1055-1070
    • /
    • 2016
  • The aim of this experimental study is to investigate the free vibration and buckling behaviors of hybrid composite beams having different span lengths and orientation angles subjected to different impact energy levels. The impact energies are applied in range from 10 J to 30 J. Free vibration and buckling behaviors of intact and impacted hybrid composite beams are compared with each other for different span lengths, orientation angles and impact levels. In free vibration analysis, the first three modes of hybrid beams are considered and natural frequencies are normalized. It is seen that first and second modes are mostly affected with increasing impact energy level. Also, the fundamental natural frequency is mostly affected with the usage of mold that have 40 mm span length (SP40). Moreover, as the impact energy increases, the normalized critical buckling loads decrease gradually for $0^{\circ}$ and $30^{\circ}$ oriented hybrid beams but they fluctuate for the other beams.

Technique of Medern Wind Power Generation (현대의 풍력발전 기술)

  • Kim, Jeong-Hwan;Kim, Yoon-Hae;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.3 s.12
    • /
    • pp.62-77
    • /
    • 2001
  • The modern wind turbines are widely used as important natural energy sources for the electric generation in western countries and some Asian nations. They are commercially matured and progressive and clear policy for the more development with higher technical purposes is maintained throughout the world. Modern wind turbines produce nearly 2000 kW output in their largest sizes and this trend increases up to more powerful power and ultimate utilization of wind energy favoured by clean natural energy. This article has the points of reviewing the states of the art of modern wind turbines with their present technical directions toward next generation version. Some descriptionsare given for easy understanding of the turbine components and related fluid mechanics concerned. The general outlines of policy taken over some countries are also introduced.

  • PDF

The research of vibration power generation to make effective use of ocean wave energy (파도에너지를 효율적으로 이용하기위한 파력진동발전기에 대한 연구)

  • Lee, Hong-Chan;Lee, Jae-Ho;Han, Ki-Bong
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.10a
    • /
    • pp.75-75
    • /
    • 2011
  • This paper has been studied that ocean wave vibration power generator is composed of buoy and vibration generator to make effective use of ocean wave energy. We designed buoy to can occur resonance for dominant frequency with ocean wave. And then we fitted the natural frequency of vibration system with vibration power generator to buoy's natural frequency. And we can show that the amplitude of ocean wave up and down motion is decreased, on the other hand, the displacement of vibration system with vibration power generator is increased. Therefore, ocean wave vibration power generator which is proposed in this paper has merits not only securing its stability from surroundings but also producing more electronic power by using ocean wave energy.

  • PDF

A Study on the Heat pump - Latent Heat Storage System for the Greenhouse Heating (그린하우스 난방을 위한 열펌프-잠열축열 시스템 연구)

  • 송현갑;노정근;박종길;강연구;김현철
    • Journal of Biosystems Engineering
    • /
    • v.23 no.2
    • /
    • pp.147-156
    • /
    • 1998
  • It is desirable to use the renewable energy for the greenhouse heating in winter season, it make possible not only to save fossil fuel and conserve green environment but also to promote the quality of agricultural products and reduce the agricultural production cost. In this study the heat pump - PCM latent heat storage system has been developed to use the natural energy as much as possible for the thermal environment control of greenhouse. The coefficient of performance (COP) of the heat pump system was 3~4 with the ambient temperature ranging from 8$^{\circ}C$ to -8$^{\circ}C$, and greenhouse heating effect of the heat pump-PCM latent heat storage system on the basis of the ambient temperature was about 12-15$^{\circ}C$.

  • PDF

'Health Preservation' Resistance Against Senile Involution ('양생' 중재보진기)

  • Cui Xun;You Hee Tae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.3
    • /
    • pp.421-423
    • /
    • 2002
  • Senile involution is divided into two classes : physiological senile involution and pathological senile involution. Physiological senile involution is a natural process of vital action of decreasing Vital Essence and Energy in kidney that is a necessary physiological phenomenon. Pathological senile involution is an evidence of impairment of True Qi of internal human body. Human vital action is a changing process of life, senility, sickness, and death. In other words, this is a natural process of being full and decreasing of Vital Essence and Energy in kidney, and True Qi of human body decides this process. The Vital Essence and Energy in kidney vary, and they are influenced and restricted by various elements. The time of a senile involution varies individually. Human body protects and makes efforts not to leak out True Qi in effective ways. We can postpone a limit of time of physiological senile involution phenomenon. This is called 'Health Preservation' - resistance against senile involution.

An Experimental Study on the Thermal Behavior of Aquifer Thermal Energy Storage System (대수층 축열시스템의 열거동에 관한 실험적 연구)

  • 이세균;문병수;남승백;김기덕
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1780-1787
    • /
    • 1992
  • Experiments have been performed on the thermal behavior in a liquid saturated porous medium in a system to simulate a single well aquifer thermal energy storage system. The principal interests in this study are the combined effects of forced and natural convection. Significant buoyancy flow due to natural convection is developed quickly as the temperature difference between the injection and original aquifer temperature increases. Theoretical model under simplified assumptions (called simple buoyancy flow model in this study) has been developed. The results of this model agree well with the experiments. The effects of buoyancy flow on the recovery factor are also examined in this study.