• Title/Summary/Keyword: Natural Circulation Flow

Search Result 156, Processing Time 0.022 seconds

Critical Heat Flux under Forced and Natural Circulations of Water at Low-Pressure, Low-Flow Conditions

  • Kim, Yun-Il;Baek, Won-Pil;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.315-320
    • /
    • 1995
  • The CHF phenomenon has been investigated for water flow under forced and natural circulation modes with vertical round tubes at low pressure and low flow condition. Experiments have been performed by using three different test sections for mass fluxes below 400 kg/㎡s under near atmospheric pressure. The experimental data for forced and natural circulation are compared with each other. To predict the flow rate at the two-phase region our test condition has been analyzed by RELAP5/MOD3 because the local two-phase condition inside the stainless steel tube cannot be directly measured. To predict the CHF with accuracy we have to consider the parameters at the single-phase region as well as the flow behavior at the two-phase region.

  • PDF

Performance of Natural Circulation Hot Water System with Flat-Plate Solar Collectors (평만형 태양열 집열기 를 설치한 자연 순환식 급탕시스템 의 성능 에 관한 연구)

  • 윤석범;전문헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.579-589
    • /
    • 1985
  • The storage tank of the natural-circulation-solar-hot-water system equipped with flat-plate solar collectors is located at higher elevation than the solar collectors. Therefore, the heat loss from the system due to a reversed flow during the night-time is an important factor as well as the day-time thermal performance of the system. The thermal performance of the natural-circulation-solar-hot-water system with flat-plate solar collectors during the day-time depends mainly on the heat collecting efficiency of the solar collectors, whereas its thermal performance during the night-time depends on the system configuration , such as the elevation of the water storage tank with respect to the solar collectors and the piping connections between the storage tank and the solar collectors, as well as thermo-physical properties of the circulating fluid. In the present work, a computer program has been developed to simulate a typical natural-circulation-solar-hot-water-system, and a series of simulation tests have been carried out with the computer program to examine the thermal performance of the system during the day-time as well as the hight-time. In addition , a series of experiment have been conducted under a real sun condition using a natural-circulation-solar-hot-water-system constructed and installed at the KAIST building to compare with the results obtained from computer simulations.

The Effects of Coolant Inventory and Noncondensible Gas on the Natural Circulation in a PWR Loop System (PWR루프계통에서 냉각재 재고량 및 비응축성 가스의 자연순환에 미치는 영향)

  • Cha, Jong-Hee;Jin, Yong-Suk
    • Nuclear Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.308-320
    • /
    • 1989
  • The objective of this work is to investigate the effects of diminished primary coolant inventory and the presence of noncondensible gas during single- and two-phase natural circulation in a PWR loop model. The test model was composed of two loops with a U-tube heat exchanger in each loop. Through a series of tests, it has been confirmed that the two-phase natural circulation flow rates were greatly dependent on primary coolant inventory as previous investigators observed. The primary coolant inventory limit to maintain two-phase natural circulation was found to be the amount of the coolant necessary to keep the waterline of the coolant nozzle hole center in this model. The presence of noncondensible gas impede the single-phase natural circulation, but it did not affect the two-phase natural circulation significantly.

  • PDF

Experiment of Natural Circulation Loop Using a Cryocooler (극저온냉동기를 이용한 자연순환 루프의 실험)

  • Kim, M.J.;Chang, H.M.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2194-2199
    • /
    • 2007
  • An experimental study is performed to investigate the thermal and flow characteristics of subcooled liquid nitrogen in a natural circulation loop. Experimental apparatus is designed and constructed such that a closed loop is cooled at the top by a cryocooler and heated nearly at the bottom by cartridge heaters. Steady state is obtained by controlling the heating power to the cartridge heaters and a thin-film heater to reduce the cooling power of the cryocooler. Temperature is measured at several locations of the loop and the mass flow rate through the loop is estimated from the energy balance in terms of the measured temperatures. Experiment is repeated for various values of the vertical height between the cooling and heating parts. The results show that the heat transfer capability of the loop has a maximum at a certain value of height. The optimal height to maximize the heat transfer is in a good agreement with analytical prediction to take into account the buoyancy and viscous forces in the loop.

  • PDF

Comparison of auxiliary Feedwater and EDRS Operation during Natural Circulation of MRX

  • Kim, Jae-Hak;Park, Goon-Cherl
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.514-519
    • /
    • 1997
  • The MRX is an integral type ship reactor with 100 MWt power, which is designed by Japan Atomic Energy Research Institute. It is characterized by integral type PWR, in-vessel type control roe drive mechanism, water-filled containment vessel and passive decay heat removal system. Marine reactor should have high passive safety. Therefore, in this study, we simulated the loss of flow accident to verify the passive decay heat removal by natural circulation using RETRAN-03 code. auxiliary feed water systems are used for decay heat removal mechanism and results are compared with the loss of flow accident analysis using emergency decay heat removal system by JAERI. Results are very similar to case of EDRS 1 loop operation in JAERI analysis and decay heat is successfully removed by natural circulation.

  • PDF

Comparative study of CFD and 3D thermal-hydraulic system codes in predicting natural convection and thermal stratification phenomena in an experimental facility

  • Audrius Grazevicius;Anis Bousbia-Salah
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1555-1562
    • /
    • 2023
  • Natural circulation phenomena have been nowadays largely revisited aiming to investigate the performances of passive safety systems in carrying-out heat removal under accidental conditions. For this purpose, assessment studies using CFD (Computational Fluid Dynamics) and also 3D thermal-hydraulic system codes are considered at different levels of the design and safety demonstration issues. However, these tools have not being extensively validated for specific natural circulation flow regimes involving flow mixing, temperature stratification, flow recirculation and instabilities. In the present study, an experimental test case based on a small-scale pool test rig experiment performed by Korea Atomic Energy Research Institute, is considered for code-to-code and code-to-experimental data comparison. The test simulation is carried out using the FLUENT and the 3D thermal-hydraulic system CATHARE-2 codes. The objective is to evaluate and compare their prediction capabilities with respect to the test conditions of the experiment. It was observed that, notwithstanding their numerical and modelling differences, similar agreement results are obtained. Nevertheless, additional investigations efforts are still needed for a better representation of the considered phenomena.

A Study on the System Performance Prediction Method of Natural Circulation Solar Hot Water System (자연순환식 태양열 급탕 시스템의 성능 추정 방법에 관한 연구)

  • Youn, Suck-Berm;Chun, Moon-Hyun
    • Solar Energy
    • /
    • v.7 no.2
    • /
    • pp.37-53
    • /
    • 1987
  • This study has been prepared for the purpose of developing the system performance prediction method of natural circulation solar hot water system. The storage tank of the natural circulation solar hot water system equipped with flat-plate solar collector is located at higher elevation than the solar collectors. Therefor, the storage tank temperature distribution formed accordance with configuration of storage tank by flow rate of circulating fluid affect system collection efficiency. In this study measure the storage tank temperature distribution with various experimental system under real sun condition and present the theoretical prediction method of the storage tank temperature. Moreover measure the flow rate not only day-time but also night-time reverse flow rate with die injection visual flow meter. Main conclusion obtain from the present study is as follows; 1) The storage tank temperature distribution above the connecting pipe connection position is the same as that of the fully mixed tank and below the connection position is the same as that of stratified tank. 2) The system performance sensitive to the storage tank temperature distribution. Therefore detailed tank model is necessary. Average storage tank temperature can be calculate 3% and storage tank temperature profile can get less than 10% difference with this model system.

  • PDF

An approach to the coupled dynamics of small lead cooled fast reactors

  • Zarei, M.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1272-1278
    • /
    • 2019
  • A lumped kinetic modeling platform is developed to investigate the coupled nuclear/thermo-fluid features of the closed natural circulation loop in a low power lead cooled fast reactor. This coolant material serves a reliable choice with noticeable thermo-physical safety characteristics in terms of natural convection. Boussienesq approximation is resorted to appropriately reduce the governing partial differential equations (PDEs) for the fluid flow into a set of ordinary differential equations (ODEs). As a main contributing step, the coolant circulation speed is accordingly correlated to the loop operational power and temperature levels. Further temporal analysis and control synthesis activities may thus be carried out within a more consistent state space framework. Nyquist stability criterion is thereafter employed to carry out a sensitivity analysis for the system stability at various power and heat sink temperature levels and results confirm a widely stable natural circulation loop.

Thermal-hydraulic simulation and evaluation of a natural circulation thermosyphon loop for a reactor cavity cooling system of a high-temperature reactor

  • Swart, R.;Dobson, R.T.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.271-278
    • /
    • 2020
  • The investigation into a full-scale 27 m high, by 6 m wide, thermosyphon loop. The simulation model is based on a one-dimensional axially-symmetrical control volume approach, where the loop is divided into a series of discreet control volumes. The three conservation equations, namely, mass, momentum and energy, were applied to these control volumes and solved with an explicit numerical method. The flow is assumed to be quasi-static, implying that the mass-flow rate changes over time. However, at any instant in time the mass-flow rate is constant around the loop. The boussinesq approximation was invoked, and a reasonable correlation between the experimental and theoretical results was obtained. Experimental results are presented and the flow regimes of the working fluid inside the loop identified. The results indicate that a series of such thermosyphon loops can be used as a cavity cooling system and that the one-dimensional theoretical model can predict the internal temperature and mass-flow rate of the thermosyphon loop.

CATHARE simulation results of the natural circulation characterisation test of the PKL test facility

  • Salah, Anis Bousbia
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1446-1453
    • /
    • 2021
  • In the past, several experimental investigations aiming at characterizing the natural circulation (NC) behavior in test facilities were carried out. They showed a variety of flow patterns characterized by an inverted U-shape of the NC flow curve versus primary mass inventory. On the other hand, attempts to reproduce such curves using thermal-hydraulic system codes, showed 10-30% differences between the measured and calculated NC mass flow rate. Actually, the used computer codes are generally based upon nodalization using single U-tube representation. Such model may not allow getting accurate simulation of most of the NC phenomena occurring during such tests (like flow redistribution and flow reversal in some SG U-tubes). Simulations based on multi-U-tubes model, showed better agreement with the overall behavior, but remain unable to predict NC phenomena taking place in the steam generator (SG) during the experiment. In the current study, the CATHARE code is considered in order to assess a NC characterization test performed in the four loops PKL facility. For this purpose, four different SG nodalizations including, single and multi-U-tubes, 1D and 3D SG inlet/outlet zones are considered. In general, it is shown that the 1D and 3D models exhibit similar prediction results up to a certain point of the rising part of the inverted U-shape of the NC flow curve. After that, the results bifurcate with, on the one hand, a tendency of the 1D models to over-predict the measured NC mass flow rate and on the other hand, a tendency of the 3D models to under-predict the NC flow rate.