• Title/Summary/Keyword: Natural Circulation Flow

Search Result 156, Processing Time 0.027 seconds

A Study on Water Quality Impact by Pollution Source in Yongwon Channel, Busan Newport (부산신항 용원수로에서의 오염원별 수질영향 조사)

  • Kwon, Jae Hyun;Kim, Young Do;Jung, Jae Hoon;Jeong, Weon Mu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.2
    • /
    • pp.185-196
    • /
    • 2013
  • In Yongwon channel, its natural flow of seawater is blocked by the construction of Busan Newport including the container berth. The channel was transformed into a narrow and long one, where it is possible that ships are only allowed to pass through the north-side channel of Gyeonmado located at the point of river mouth to Songjeongcheon. In addition, Yongwon channel is approximately 100 m wide on average and 3,600 m long, which has the highest slenderness ratio (length/width=36). So it is considered that the changes in the terrain characteristics of Yongwon channel is likely to alter the circulation of sea water, thereby changing its water quality. In this study, the seasonal change and the spatial variation of the water quality in Yongwon channel was analyzed for the effect of land pollution using the measurement data. The mass balance calculation method is used to analyze the water pollution resulting from sediment pollutants. This result shows that the improvement of the water quality in Yongwon channel can be obtained from the sewer pipe modification and the environmental dredging.

RCGVS Design Improvement and Depressurization Capability Tests for Ulchin Nuclear Power Plant Units 3 and 4

  • Sung, Kang-Sik;Seong, Ho-Je;Jeong, Won-Sang;Seo, Jong-Tae;Lee, Sang-Keun;Keun hyo Lim;Park, Kwon-Sik;Oh, Chul-Sung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.417-422
    • /
    • 1998
  • he Reactor Coolant Gas Vent System(RCGVS) design for Ulchin Nuclear Power Plant Units 3&4(UCN 3&4) has been improved from the Yonggwang Nuclear Power Plant Units 3&4(YGN 3&4) based on the evaluation results for depressurization capability tests performed at YGN 3&4. There has been a series of plant safety analyses for Natural Circulation Cooldown(NCC) event and thermo-dynamic analyses with RELAP5 code for the steam blowdown Phenomena in order to optimize the orifice size of UCN 3&4 RCGVS. Baesd on these analyses results, the RCGVS orifice size for UCN 3&4 has been reduced to 9/32 inch from the l1/32 inch for YGN 3&4. The depressurization capability tests, which were performed at UCN 3 in order to verify the FSAR NCC analysis results, show that the RCGVS depressurization rates are being within the acceptable ranges. Therefore, it is concluded that the orificed flow path of UCN 3&4 RCGVS is adequately designed, and can provide the safety-grade depressurization capability required for a safe plant operation.

  • PDF

ANALYSIS OF A STATION BLACKOUT SCENARIO WITH AN ATLAS TEST

  • Kim, Yeon-Sik;Yu, Xin-Guo;Kang, Kyoung-Ho;Park, Hyun-Sik;Cho, Seok;Choi, Ki-Yong
    • Nuclear Engineering and Technology
    • /
    • v.45 no.2
    • /
    • pp.179-190
    • /
    • 2013
  • A station blackout experiment called SBO-01 was performed at the ATLAS facility. From the SBO-01 test, the station blackout scenario can be characterized into two typical phases: A first phase characterized by decay heat removal through secondary safety valves until the SG dryouts, and a second phase characterized by an energy release through a blowdown of the primary system after the SG dryouts. During the second phase, some physical phenomena of the change over a pressurizer function, i.e., the pressurizer being full before the POSRV $1^{st}$ opening and then its function being taken by the RV, and the termination of normal natural circulation flow were identified. Finally, a core heatup occurred at a low core water level, although under a significant amount of PZR inventory, whose drainage seemed to be hindered owing to the pressurizer function by the RV. The transient of SBO-01 is well reproduced in the calculation using the MARS code.

TAPINS: A THERMAL-HYDRAULIC SYSTEM CODE FOR TRANSIENT ANALYSIS OF A FULLY-PASSIVE INTEGRAL PWR

  • Lee, Yeon-Gun;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.45 no.4
    • /
    • pp.439-458
    • /
    • 2013
  • REX-10 is a fully-passive small modular reactor in which the coolant flow is driven by natural circulation, the RCS is pressurized by a steam-gas pressurizer, and the decay heat is removed by the PRHRS. To confirm design decisions and analyze the transient responses of an integral PWR such as REX-10, a thermal-hydraulic system code named TAPINS (Thermal-hydraulic Analysis Program for INtegral reactor System) is developed in this study. Based on a one-dimensional four-equation drift-flux model, TAPINS incorporates mathematical models for the core, the helical-coil steam generator, and the steam-gas pressurizer. The system of difference equations derived from the semi-implicit finite-difference scheme is numerically solved by the Newton Block Gauss Seidel (NBGS) method. TAPINS is characterized by applicability to transients with non-equilibrium effects, better prediction of the transient behavior of a pressurizer containing non-condensable gas, and code assessment by using the experimental data from the autonomous integral effect tests in the RTF (REX-10 Test Facility). Details on the hydrodynamic models as well as a part of validation results that reveal the features of TAPINS are presented in this paper.

PILLAR: Integral test facility for LBE-cooled passive small modular reactor research and computational code benchmark

  • Shin, Yong-Hoon;Park, Jaeyeong;Hur, Jungho;Jeong, Seongjin;Hwang, Il Soon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3580-3596
    • /
    • 2021
  • An integral test facility, PILLAR, was commissioned, aiming to provide valuable experimental results which can be referenced by system and component designers and used for the performance demonstration of liquid-metal-cooled, passive small modular reactors (SMRs) toward their licensing. The setup was conceptualized by a scaling analysis which allows the vertical arrangements to be conserved from its prototypic reactor, scaled uniformly in the radial direction achieving a flow area reduction of 1/200. Its final design includes several heater rods which simulate the reactor core, and a single heat exchanger representing the steam generators in the prototype. The system behaviors were characterized by its data acquisition system implementing various instruments. In this paper, we present not only a detailed description of the facility components, but also selected experimental results of both steady-state and transient cases. The obtained steady-state test results were utilized for the benchmark of a system code, achieving a capability of accurate simulations with ±3% of maximum deviations. It was followed by qualitative comparisons on the transient test results which indicate that the integral system behaviors in passive LBE-cooled systems are able to be predicted by the code.

Development of reduced-order thermal stratification model for upper plenum of a lead-bismuth fast reactor based on CFD

  • Tao Yang;Pengcheng Zhao;Yanan Zhao;Tao Yu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2835-2843
    • /
    • 2023
  • After an emergency shutdown of a lead-bismuth fast reactor, thermal stratification occurs in the upper Plenum, which negatively impacts the integrity of the reactor structure and the residual heat removal capacity of natural circulation flow. The research on thermal stratification of reactors has mainly been conducted using an experimental method, a system program, and computational fluid dynamics (CFD). However, the equipment required for the experimental method is expensive, accuracy of the system program is unpredictable, and resources and time required for the CFD approach are extensive. To overcome the defects of thermal stratification analysis, a high-precision full-order thermal stratification model based on CFD technology is prepared in this study. Furthermore, a reduced-order model has been developed by combining proper orthogonal decomposition (POD) with Galerkin projection. A comparative analysis of thermal stratification with the proposed full-order model reveals that the reduced-order thermal stratification model can well simulate the temperature distribution in the upper plenum and rapidly elucidate the thermal stratification interface characteristics during the lead-bismuth fast reactor accident. Overall, this study provides an analytical tool for determining the thermal stratification mechanism and reducing thermal stratification.

Estimation of irrigation return flow from paddy fields on agricultural watersheds (농업유역의 논 관개 회귀수량 추정)

  • Kim, Ha-Young;Nam, Won-Ho;Mun, Young-Sik;An, Hyun-Uk;Kim, Jonggun;Shin, Yongchul;Do, Jong-Won;Lee, Kwang-Ya
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Irrigation water supplied to the paddy field is consumed in the amount of evapotranspiration, underground infiltration, and natural and artificial drainage from the paddy field. Irrigation return flow is defined as the excess of irrigation water that is not consumed by evapotranspiration and crop, and which returns to an aquifer by infiltration or drainage. The research on estimating the return flow play an important part in water circulation management of agricultural watershed. However, the return flow rate calculations are needs because the result of calculating return flow is different depending on irrigation channel water loss, analysis methods, and local characteristics. In this study, the irrigation return flow rate of agricultural watershed was estimated using the monitoring and SWMM (Storm Water Management Model) modeling from 2017 to 2020 for the Heungeop reservoir located in Wonju, Gangwon-do. SWMM modeling was performed by weather data and observation data, water of supply and drainage were estimated as the result of SWMM model analysis. The applicability of the SWMM model was verified using RMSE and R-square values. The result of analysis from 2017 to 2020, the average annual quick return flow rate was 53.1%. Based on these results, the analysis of water circulation characteristics can perform, it can be provided as basic data for integrated water management.

Cinematic Circulation of Meta-verse and Meta-physics (메타버스와 메타피직스의 영화적 순환)

  • Shim, Kwang-hyun
    • Trans-
    • /
    • v.12
    • /
    • pp.81-106
    • /
    • 2022
  • The possibility of metaverse system to be a catalyst for hyper-connected society will be dependent on the speed of connected technological development and its social utilization in the same manner as AI technology. Putting these technical realization processes in brackets, this paper focus on some philosophical-political issues in connection with cognitive-ecological changes in the future cinema which will be influenced by the complexive techno-socio couples of accelerated development of metaverse system. Generally speaking, essence of metaverse system seems to be the degree of immersion by technical accuracy, but is not true. In perspective of cognitive-ecology, flow degree of a picture or photograph is relied not on 'accuracy of representation' but on its message's contextual link-up. In this aspect, real potentiality of metaverse system shall be understood in the context of cognitive-ecological changes of human brain's multi-intelligence networking abilities(intersection of augmentation-simulation and outside-inside) which will be activated in the new structure of natural-social-technological coupling of metaverse system. These cognitive-ecological potentialities have been partially actualized in the cinematic process of tripod mimesis for the longest time, [real contradiction/conflicts (Mimesis-1) -->fictional solutions of cinema (Mimesis-2) --> selective interpretation of spectator's wish fulfillment (Mimesis-3) --> real change (Mimesis-1')]. Therefore metaverse's real potentiality must be considered to be dependent on the possibility of deepening and extending of cinematic circulation between real seperation/problems and ideal connection/solutions. In this context, advanced metaverse system can be compared as a modern technical version of ideal circulation of physics and metaphysics

Natural Convection in a Water Tank with a Heated Horizontal Plate Facing Downward (아래로 향한 수평가열판이 있는 수조에서의 자연대류)

  • Yang, Sun-Kyu;Chung, Moon-Ki;Helmut Hoffmann
    • Nuclear Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.301-316
    • /
    • 1995
  • experimental and computational studies ore carried out to investigate the natural convection of the single phase flow in a tank with a heated horizontal plate facing downward. This is a simplified model for investigations of the influence of a core melt at the bottom of a reactor vessel on the thermal hydraulic behavior in a oater filled cavity surrounding the vessel. In this case the vessel is simulated by a hexahedron insulated box with a heated plate Horizontally mounted at the bottom of the box. The box with the heated plate is installed in a water filled hexahedron tank. Coolers are immersed in the U-type water volume between the box and the tank. Although the multicomponent flows exist more probably below the heated plate in reality, present study concentrates on the single phase flow in a first step prior to investigating the complicated multicomponent thermal hydraulic phenomena. In the present study, in order to get a better understanding for the natural convection characteristics below the heated plate, the velocity and temperature are measured by LDA(Laser Doppler Anemometry) and thermocouples, respectively. And How fields are visualized by taking pictures of the How region with suspended particles. The results show the occurrence of a very effective circulation of the fluid in the whole How area as the heater and coolers are put into operation. In the remote region below the heated plate the new is nearly stagnant, and a remarkable temperature stratification can be observed with very thin thermal boundary. Analytical predictions using the FLUTAN code show a reasonable matching of the measured velocity fields.

  • PDF

A Study on the Treatment of Radioactive Liquid Wastes using Synthetic textile by Air Intake System (공기유입시스템에서의 섬유매체에 의한 방사성액체폐기물 처리에 관한 연구)

  • 김태국;이영희;안섬진;손종식;홍권표
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.101-104
    • /
    • 2003
  • In this study based on the mass transfer theory, experiments for the evaporation rates depending on various conditions were carried out through the operation of the existing Natural Evaporation Facility in KAERI. Evaporation media were made of the cotton and polyester. Air circulation in the facility was forced by exhausting fans. The evaporation rate and the decontamination factor were calculated by the result of experiment. The evaporation rate increased as the flow rate of air supply, the feed rate of liquid waste, and the temperature of supplied air increased. As for the humidity of supplied air, the evaporation rate was getting higher as the humidity was getting lower. As the result of this study, operation conditions of the Natural Evaporation Facility are optimized as follows : The air temperature above $8^{\circ}C$, the air humidity below 70%, the air flow rate 1.14-1.47 m/sec, and the liquid waste feed rate $4.6{\ell}/hr\cdotm^2$. The decontamination factor and the radioactivity are $5.1{\times}10^3$and $4.7{\times}10^{-13}{\mu}Ci/\textrm{m}{\ell}$ respectively, at the above mentioned optimum operation conditions. The air factor in the Dalton's equation for evaporation was determined from results of experiment on the temperature, the humidity, and the flow rate of supplied air as following : $[\textit{Eh}=(0.018 + 0.0141\textitv) {\delta}textitH]$

  • PDF