• Title/Summary/Keyword: Natural Background Pollutant

Search Result 5, Processing Time 0.022 seconds

Improvement on Management of Non-point Source Pollution for Reasonable Implementation of TMDL - Focusing on Selection of Non-point Source Pollution Management Region and Management of Non-point Source Pollutant - (수질오염총량관리제의 합리적인 시행을 위한 비점오염원관리 개선방안 - 비점오염원 관리지역 선정 및 비점오염물질 관리를 중심으로 -)

  • Yi, Sang-Jin;Kim, Young-Il
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.10
    • /
    • pp.719-723
    • /
    • 2014
  • For effective implementation of total maximum daily load (TMDL), this study presented the improving plans of non-point source pollution management including the classification of non-point source pollution, calculation of non-point source pollution load (generated, discharged), selection of non-point source pollution management regions and management of non-point source pollutant. First of all, the definition of point source pollution and non-point source pollution based on the legal and scientific viewpoint should be precisely classified and managed. Especially, the forest, grassland and river without occurrence of environmental damage by activity of business and human should be separately classified natural background pollutants. The unit for generated and discharged non-point source pollution should be preferentially changed according to actual condition of watershed. The calculation methods of generated and discharged non-point source pollution should be corrected consideration on the amount and duration of rainfall. While the TMDL is implemented, non-point source pollution management regions should be selected in the watersheds exceed the targeted water quality standards by the rainfall. The non-point source pollution management regions should be selected in the minimal regions where have high values of discharged non-point source pollution density in the urban area, farmland and site area except forest, grassland in the whole watershed. The non-point source pollutant treatment facilities, which take into consideration non-point source pollution load per unit area, duration of the excess concentration, realizable possibility of treatment, effectiveness of treatment cost versus point source pollutant, should be established in the regions with a large generated non-point source pollution load and a high concentration of water quality exceed the targeted water quality standards by the rainfall.

Stem Cells and Cell-Cell Communication in the Understanding of the Role of Diet and Nutrients in Human Diseases

  • Trosko James E.
    • Journal of Food Hygiene and Safety
    • /
    • v.22 no.1
    • /
    • pp.1-14
    • /
    • 2007
  • The term, "food safety", has traditionally been viewed as a practical science aimed at assuring the prevention acute illnesses caused by biological microorganisms, and only to a minor extent, chronic diseases cause by chronic low level exposures to natural and synthetic chemicals or pollutants. "food safety" meant to prevent microbiological agents/toxins in/on foods, due to contamination any where from "farm to Fork", from causing acute health effects, especially to the young, immune-compromised, genetically-predisposed and elderly. However, today a broader view must also include the fact that diet, perse (nutrients, vitamins/minerals, calories), as well as low level toxins and pollutant or supplemented synthetic chemicals, can alter gene expressions of stem/progenitor/terminally-differentiated cells, leading to chronic inflammation and other mal-functions that could lead to diseases such as cancer, diabetes, atherogenesis and possibly reproductive and neurological disorders. Understanding of the mechanisms by which natural or synthetic chemical toxins/toxicants, in/on food, interact with the pathogenesis of acute and chronic diseases, should lead to a "systems" approach to "food safety". Clearly, the interactions of diet/food with the genetic background, gender, and developmental state of the individual, together with (a) interactions of other endogenous/exogenous chemicals/drugs; (b) the specific biology of the cells being affected; (c) the mechanisms by which the presence or absence of toxins/toxicants and nutrients work to cause toxicities; and (d) how those mechanisms affect the pathogenesis of acute and/or chronic diseases, must be integrated into a "system" approach. Mechanisms of how toxins/toxicants cause cellular toxicities, such as mutagenesis; cytotoxicity and altered gene expression, must take into account (a) irreversible or reversal changes caused by these toxins or toxicants; (b)concepts of thresholds or no-thresholds of action; and (c) concepts of differential effects on stem cells, progenitor cells and terminally differentiated cells in different organs. This brief Commentary tries to illustrate this complex interaction between what is on/in foods with one disease, namely cancer. Since the understanding of cancer, while still incomplete, can shed light on the multiple ways that toxins/toxicants, as well as dietary modulation of nutrients/vitamins/metals/ calories, can either enhance or reduce the risk to cancer. In particular, diets that alter the embryo-fetal micro-environment might dramatically alter disease formation later in life. In effect "food safety" can not be assessed without understanding how food could be 'toxic', or how that mechanism of toxicity interacts with the pathogenesis of any disease.

Geochemical Characteristics of Soil Solution from the Soil Near Mine Tailing Dumps and the Contamination Assessment in Duckum Mine (토양수의 자구화학특성에 따른 금속폐광산 광미야적장주변 토양오염평가: 덕음광산)

  • 이상훈;정주연
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.61-72
    • /
    • 2004
  • The soil samples were collected from the paddy field near the mine tailing dumps in the abandoned Duckum mine in Korea. In the laboratory, the soil solution was extracted from the soil using centrifuge, and analysed for the chemical composition. Physical and chemical soil properties were also analysed. Kaolinite is the main clay minerals in the paddy soil and the CEC value is therefore relatively low. Nearly all soil samples show enrichment in their trace elemental concentrations(Cd, Cu, Pb and Zn) compared with natural background level. Some soil samples exceed the soil remediation intervention values for Cd, Pb and Zn and target value for Cu, when compared with Dutch standard, whereas As, Ni and Cr are in normal range. Lead concentrations in some samples near the mine tailing dumps also exceed the standard for remediation act for agricultural area set by Korean soil conservation law. The trace elemental concentrations are higher in the paddy soil nearer the mine tailing dumps and lower for the samples from distance. Similar trend with distance is found for the soil solution chemistry but the decrease with distance from the mine tailing dumps are sharper than the changes in soil chemistry. Cadmium, Cu and Pb concentrations in the soil solution are very low, ranging from a tenth and hundredths to a maximum of several mg/l, whereas their concentrations in soils are highly enriched for natural background. Most of the trace elements are thought to be either removed by reduced iron sulphides or iron oxides, depending on the redox changes. Geochemical equilibrium modelling indicate the presence of solubility controlling solid phases for Cd and Pb, whereas Zn and Cu might have been controlled by adsorption/desorption processes. Although pollutants migration through solution phase are thought to be limited by adsorption onto various Fe, Mn solid phases, the pollutants exist as easily releasable fractions such as exchangeable site. In this case, the paddy soil would act as pollutant pool, which will supply to plants in situ. whenever the geochemical conditions favour.

Atomic Absorption Spectrophotometric Analysis of Lead (Pb) in the Soils of Cropping Areas Near Highways (원자흡광법에 의한 고속도로변 경작지토양중의 납함량분석에 관한 연구)

  • Park Seung Heui
    • Korean journal of applied entomology
    • /
    • v.18 no.1 s.38
    • /
    • pp.43-48
    • /
    • 1979
  • This study was conducted to detect lead which is exhausted with gas from running automobiles and is considered to accumulate in cropping lands. Soil samples were taken from uplands and paddy fields with different distance from highways. atonic absorption spectrophotometer was applied for analysis. Results obtained are summarized as follows: 1. In the areas of Seoul toll gate and Jookjeon, Gyeonggi province, soils of fields within $3\~5$ meters from highway appeared to contain $11\~110\;ppm$ of lead. On the other hand, soils outside of $3\~5$ meters showed only natural background level of lead. 2. The maximum concentration of lead in Hwoedeuk area (Choong-nam p개vince) was 16.3 ppm and those of Kimhae and Dongrae areas were about 12 ppm. Low concentration of $1\~4\;ppm$ was observed in the areas, south of Daejeon along the Honam and Namhae highways. 3. Lead seemed to accumulate in the soil surface within the range of 0 to 5 centimeters which anable to expect little translocation to deeper layer of the soil. 4. lost of arable lands locates at least 15 meters apart from highways so that lead concentrations were lower than expected. No damage could be speculated with the present concentration of lead analyzed. This does not deny the necessity to the long term dectect of the possible pollutant.

  • PDF

Development of GIS based Water Quality Simulation System for Han River and Kyeonggi Bay Area (한강과 경기만 지역 GIS 기반 통합수질모의 시스템 개발)

  • Lee, Chol-Young;Kim, Kye-Hyun
    • Journal of Korea Spatial Information System Society
    • /
    • v.10 no.4
    • /
    • pp.77-88
    • /
    • 2008
  • There has been growing demands to manage the water quality of west coastal region due to the large scale urbanization along the coastal zone, the possibility of application of TMDL(Total Maximum Daily Loadings) to Han river, and the natural disaster such as oil spill incident in Taean, Chungnam. However, no system has been developed for such purposes. In this background, the demand of GIS based effective water quality management has been increased to monitor water quality environment and propose best management alternatives for Han river and Kyeonggi bay. This study mainly focused on the development of integrated water quality management system for Han river bas in and its estuary are a connected to Kyeonggi bay to support integrated water quality management and its plan. Integration was made based on GIS by spatial linking between water quality attributes and location information. A GIS DB was built to estimate the amount of generated and discharged water pollutants according to TMDL technical guide and it included input data to use two different water quality models--W ASP7 for Han river and EFDC for coastal area--to forecast water quality and to suggest BMP(Best management Practices). The results of BOD, TN, and TP from WASP7 were used as the input to run EFDC. Based on the study results, some critical areas which have relatively higher pollutant loadings were identified, and it was also identified that the locations discharging water pollutant loadings to river and seasonal factor affected water quality. And the relationship of water quality between river and its estuary area was quantitatively verified. The results showed that GIS based integrated system could be used as a tool for estimating status-quo of water quality and proposing economically effective BMPs to mitigate water pollution. Further studies need to be made for improving system's capabilities such as adding decision making function as well as cost-benefit analysis, etc. Also, the concrete methodology for water quality management using the system need to be developed.

  • PDF