• Title/Summary/Keyword: National Marine Park

Search Result 3,673, Processing Time 0.029 seconds

Effect of Band Application of Slow Release Fertilizer on Rice Growth and Yield in Puddled-soil Drill Seeding (벼 무논골뿌림재배시 완효성비료의 측조 시비가 생육 및 수량에 미치는 영향)

  • Kim, Sang-Su;Choi, Min-Gyu;Park, Keon-Ho;Lee, Seon-Yong;Cho, Su-Yeon;Cho, Dong-Sam
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.1
    • /
    • pp.68-76
    • /
    • 1996
  • To elucidate the optimum fertilizer level and application method for band application under puddled-soil drill seeding in Jeonbuk series of fluvio-marine alluvial soil at National Honam Agricultural Experiment Station in 1995, using Dongjinbyeo, slow releasing compound fertilizer of 100% and 80% to conventional application level was applied totally as basal fertilizer simultaneously with seeding under 3cm and 5cm depth from soil surface in a distance of 4cm from the seeded row. Plant height was taller and tiller number was higher in band application than conventional application but ratio of effective tiller was vice versa. Panicle number was more but ratio of effective tiller ratio was lower in 100% than 80% level of band application and they were higher in 3cm than 5cm depth from soil surface. Leaf area index and dry weight was higher in conventional application at early growth stage but was vice versa after maximum tillering stage, and they were higher in 3cm depth at early growth stage but 5cm depth after maximum tillering stage. NH$_4$-N in soil was higher in conventional application at 25 days after seeding but, thereafter was lower than band application and it was higher in 3cm than 5cm depth till 40 days after seeding but was versa, thereafter. Lodging degree was slightly higher in band application, 100% level and 5cm depth than in their counterparts. Panicle number and grain number per $m^2$ was lower in conventional application than 80% or 100% level of band application without significant difference between band application levels or application methods. Yield was higher at 80% level of band application under 3cm depth than conventional application, but no significantly different among other application methods. Therefore, 80% level of band application under 3cm depth of soil surface was more effective for puddled-soil drill seeding on the basis of the reduction of application efforts, better plant growth and higher yield in rice.

  • PDF

Effect of Solvent Fractions from Doenjang on Antimutagenicity, Growth of Tumor Cells and Production of Interleukin-2 (된장 분획물의 항돌연변이 및 암세포 증식 억제효과와 interleukin-2 생성에 미치는 영향)

  • Kim, Kwang-Hyuk;Park, Kun-Young;Lee, Sook-Hee;Lim, Sun-Young
    • Journal of Life Science
    • /
    • v.17 no.6 s.86
    • /
    • pp.791-797
    • /
    • 2007
  • We studied the inhibitory effect of solvent fractions from doenjang on mutagenicity using Salmonella typhimurium TA100 in Ames test. We also investigated the effect of solvent fractions from doenjang on the growth of tumor cells and the production of interleukin-2 (IL-2). The treatment of dichlorormethane and ethylacetate fractions (2.5 mg/assay) from doenjang to Ames test system inhibited aflatoxin B$_1$ (AFB$_1$) induced mutagenicity by 96% and 97%, respectively, and showed a higher antimutagenic effect than other solvent fractions. In case of N-methyl-N'-nitro-N-nitrosoguamidine (MNNG) induced mutagenicity, the ethylacetate fraction showed the highest inhibitory effect (by 75%) among the other sol-vent fractions, although the inhibitory effect was not stronger compared to AFB$_1$ induced mutagenicity. The treatment of dichloromethane and ethylacetate fractions markedly inhibited the growth of Yac-1 (by 80% and 94%, respectively) and sacroma-180 cancer cells (by 60% and 96%, respectively) after 4 days of incubation at 37${\circ}$C. To elucidate the immunological mechanism of antitumor activity of doenjang, spleen cells of Balb/c mouse were exposed to the dichloromethane and ethyl-acetate fractions for 24 hours at 37${\circ}$C . The culture supernatants following the treatment of djchloromethane and ethylacetate factions to spleen cells increased the production of IL-2. These results indicated that the anticarcinogenic effect of doenjang was mediated by the production of IL-2.

Stratigraphic response to tectonic evolution of sedimentary basins in the Yellow Sea and adjacent areas (황해 및 인접 지역 퇴적분지들의 구조적 진화에 따른 층서)

  • Ryo In Chang;Kim Boo Yang;Kwak won Jun;Kim Gi Hyoun;Park Se Jin
    • The Korean Journal of Petroleum Geology
    • /
    • v.8 no.1_2 s.9
    • /
    • pp.1-43
    • /
    • 2000
  • A comparison study for understanding a stratigraphic response to tectonic evolution of sedimentary basins in the Yellow Sea and adjacent areas was carried out by using an integrated stratigraphic technology. As an interim result, we propose a stratigraphic framework that allows temporal and spatial correlation of the sedimentary successions in the basins. This stratigraphic framework will use as a new stratigraphic paradigm for hydrocarbon exploration in the Yellow Sea and adjacent areas. Integrated stratigraphic analysis in conjunction with sequence-keyed biostratigraphy allows us to define nine stratigraphic units in the basins: Cambro-Ordovician, Carboniferous-Triassic, early to middle Jurassic, late Jurassic-early Cretaceous, late Cretaceous, Paleocene-Eocene, Oligocene, early Miocene, and middle Miocene-Pliocene. They are tectono-stratigraphic units that provide time-sliced information on basin-forming tectonics, sedimentation, and basin-modifying tectonics of sedimentary basins in the Yellow Sea and adjacent area. In the Paleozoic, the South Yellow Sea basin was initiated as a marginal sag basin in the northern margin of the South China Block. Siliciclastic and carbonate sediments were deposited in the basin, showing cyclic fashions due to relative sea-level fluctuations. During the Devonian, however, the basin was once uplifted and deformed due to the Caledonian Orogeny, which resulted in an unconformity between the Cambro-Ordovician and the Carboniferous-Triassic units. The second orogenic event, Indosinian Orogeny, occurred in the late Permian-late Triassic, when the North China block began to collide with the South China block. Collision of the North and South China blocks produced the Qinling-Dabie-Sulu-Imjin foldbelts and led to the uplift and deformation of the Paleozoic strata. Subsequent rapid subsidence of the foreland parallel to the foldbelts formed the Bohai and the West Korean Bay basins where infilled with the early to middle Jurassic molasse sediments. Also Piggyback basins locally developed along the thrust. The later intensive Yanshanian (first) Orogeny modified these foreland and Piggyback basins in the late Jurassic. The South Yellow Sea basin, however, was likely to be a continental interior sag basin during the early to middle Jurassic. The early to middle Jurassic unit in the South Yellow Sea basin is characterized by fluvial to lacustrine sandstone and shale with a thick basal quartz conglomerate that contains well-sorted and well-rounded gravels. Meanwhile, the Tan-Lu fault system underwent a sinistrai strike-slip wrench movement in the late Triassic and continued into the Jurassic and Cretaceous until the early Tertiary. In the late Jurassic, development of second- or third-order wrench faults along the Tan-Lu fault system probably initiated a series of small-scale strike-slip extensional basins. Continued sinistral movement of the Tan-Lu fault until the late Eocene caused a megashear in the South Yellow Sea basin, forming a large-scale pull-apart basin. However, the Bohai basin was uplifted and severely modified during this period. h pronounced Yanshanian Orogeny (second and third) was marked by the unconformity between the early Cretaceous and late Eocene in the Bohai basin. In the late Eocene, the Indian Plate began to collide with the Eurasian Plate, forming a megasuture zone. This orogenic event, namely the Himalayan Orogeny, was probably responsible for the change of motion of the Tan-Lu fault system from left-lateral to right-lateral. The right-lateral strike-slip movement of the Tan-Lu fault caused the tectonic inversion of the South Yellow Sea basin and the pull-apart opening of the Bohai basin. Thus, the Oligocene was the main period of sedimentation in the Bohai basin as well as severe tectonic modification of the South Yellow Sea basin. After the Oligocene, the Yellow Sea and Bohai basins have maintained thermal subsidence up to the present with short periods of marine transgressions extending into the land part of the present basins.

  • PDF