• Title/Summary/Keyword: National Disaster

Search Result 3,008, Processing Time 0.031 seconds

Height Datum Transformation using Precise Geoid and Tidal Model in the area of Anmyeon Island (정밀 지오이드 및 조석모델을 활용한 안면도 지역의 높이기준면 변환 연구)

  • Roh, Jae Young;Lee, Dong Ha;Suh, Yong Cheol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.109-119
    • /
    • 2016
  • The height datum of Korea is currently separated into land and sea, which makes it difficult to acquire homogeneous and accurate height information throughout the whole nation. In this study, we therefore tried to suggest the more effective way to transform the height information were constructed separately according to each height datum on land and sea to those on the unique height datum using precise geoid models and tidal observations in Korea. For this, Anmyeon island was selected as a study area to develop the precise geoid models based on the height datums land (IMSL) and sea (LMSL), respectively. In order to develop two hybrid geoid models based on each height datum of land an sea, we firstly develop a precise gravimetric geoid model using the remove and restore (R-R) technique with all available gravity observations. The gravimetric geoid model were then fitted to the geometric geoidal heights, each of which is represented as height datum of land or sea respectively, obtained from GPS/Leveling results on 15 TBMs in the study area. Finally, we determined the differences between the two hybrid geoid models to apply the height transformation between IMSL and LMSL. The co-tidal chart model of TideBed system developed by Korea Hydrographic and Oceanographic Agency (KHOA) which was re-gridded to have the same grid size and coverage as the geoid model, in order that this can be used for the height datum transformation from LMSL to local AHHW and/or from LMSL to local DL. The accuracy of height datum transformation based on the strategy suggested in this study was approximately ${\pm}3cm$. It is expected that the results of this study can help minimize not only the confusions on the use of geo-spatial information due to the disagreement caused by different height datum, land and sea, in Korea, but also the economic and time losses in the execution of coastal development and disaster prevention projects in the future.

Experimental and Numerical Study on the Effect of the Rain Infiltration with the Increase of Surface Temperature (지표면 온도상승이 빗물의 토양침투에 미치는 영향에 대한 실험 및 수치 해석적 연구)

  • Shin, Nara;Shin, Mi Soo;Jang, Dong Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.6
    • /
    • pp.422-429
    • /
    • 2013
  • It is generally known that the increase of the Earth surface temperature due to the global warming together with the land desertification by rapid urban development has caused severe climate and weather change. In desert or desertification land, it is observed that there are always severe flooding phenomena, even if desert sand has the high porosity, which could be believed as the favorable condition of rain water infiltration into ground water. The high runoff feature causes possibly another heavy rain by quick evaporation with the depletion of underground water due to the lack of infiltration. The basic physics of desert flooding is reasonably assumed due to the thermal buoyancy of the higher temperature of the soil temperature than that of the rain drop. Considering the importance of this topic associated with water resource management and climate disaster prevention, no systematic investigation has, however, been reported in literature. In this study, therefore, a laboratory scale experiment together with the effort of numerical calculation have been performed to evaluate quantitatively the basic hypothesis of run-off mechanism caused by the increase of soil temperature. To this end, first, of all, a series of experiment has been made repeatedly with the change of soil temperature with well-sorted coarse sand having porosity of 35% and particle diameter, 2.0 mm. In specific, in case 1, the ground surface temperature was kept at $15^{\circ}C$, while in case 2 that was high enough at $70^{\circ}C$. The temperature of $70^{\circ}C$ was tested as this try since the informal measured surface temperature of black sand in California's Coachella Valley up to at 191 deg. $^{\circ}F$ ($88^{\circ}C$). Based on the experimental study, it is observed that the amount of runoff at $70^{\circ}C$ was higher more than 5% compared to that at $15^{\circ}C$. Further, the relative amount of infiltration by the decrease of the surface temperature from 70 to $15^{\circ}C$ is about more than 30%. The result of numerical calculation performed was well agreed with the experimental data, that is, the increase of runoff in calculation as 4.6%. Doing this successfully, a basic but important research could be made in the near future for the more complex and advanced topic for this topic.

Comparative Analysis of Ecological Health Conditions Before and After Ecological Restoration in Changwon Stream and Nam Stream (창원천.남천에서 생태복원 전.후의 생태건강도 비교평가)

  • Kim, Hyun-Jeong;Lee, Sang-Jae;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.307-318
    • /
    • 2010
  • This study was to analyze the ecological conditions, based on physical habitat, chemical, and biological conditions before (2006, 2007) and after ecological restoration (2009) in five sites of Changwon Stream (CS) and six sites of Nam Stream (NS), respectively, and then to compare ecological health between the two period. The analysis of ecological health was based on the multimetric models of Index of Biological Integrity (IBI) and Qualitative Habitat Evaluation Index (QHEI) along with water chemistry in the streams. For the study, the models of IBI and QHEI were modified as 8 and 11 metric attributes, respectively. For the evaluations, the survey was conducted in the period of 2006~2007 before the restoration and in 2009 after the restoration by the city. Chemical conditions, based on conductivity, in both streams showed a typical longitudinal declines along the axis of the upstream-to-downstream. There were no significant differences (p>0.05) in water quality between the two periods. Values of IBI in the CS and NS averaged 21.6 and 19.7, respectively, indicating a C grade in the criteria of Ministry of Environment, Korea, and there was no significant differences in the IBI between the two periods. Values of QHEI after the restoration averaged 29.2 and 63.2 in the CS and NS, respectively and the values decreased markedly especially, in the NS (35.3) after the restoration. The habitat disturbance was mainly attributed to destructions (i.e., the narrower width of riparian vegetation and higher substrate exposure by the air) of artificial materials by massive flood in 2009. Overall, our results suggest that the restoration was not effective in the two streams between the two periods, even if the budget was used a lot and that such ecological restoration, not considered the natural disaster, may not effect for the stream restoration.

Yields and Fruit Quality of Different Aged Walnut Trees (Juglans sinensis Dode) Derived from Seedlings in Gimcheon (김천지역 실생묘 유래 호두나무의 수령별 수확량 및 과실 품질)

  • Oh, Sung-Il;Lee, Uk;Kim, Chul-Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.3
    • /
    • pp.325-332
    • /
    • 2020
  • This study was conducted on cultivation farms in the Gimcheon area, which is the main production area of walnuts, in order to compare and analyze the yield and fruit quality of walnut trees (Juglans sinensis Dode) derived from seedlings. The official trees were classified into nine classes from 10 to 60 years old, and a total of 135 trees were selected, with 15 trees selected for each grade. The growth and fruit characteristics for each age group were then examined. The average tree height was 10.3 m, and the average crown area was 63.7 ㎡. The average number of fruit settings per tree was 573.1, with the largest number of walnuts per tree at 35 years (974.0 walnuts), and the lowest walnuts per tree at 10 years (124.7 walnuts). In addition, the number of fruit settings per bearing mother branch in 35 year old trees was the highest at 3.1. The average weight for each fruit type was found to be 58.7 ± 4.0 g of walnuts in green peel, 10.5 ± 0.5 g of dried shell walnuts, and 4.9 ± 0.2 g of walnuts, respectively. The average yield by fruit type was 32.5 ± 13.8 kg of walnuts in green peel, 5.9 ± 2.5 kg of dried shell walnut, and 2.8 ± 1.2 kg of walnuts. The yield was positively correlated with the crown area, the number of fruits setting per bearing mother branch, and the number of fruits setting per 1 ㎥. The formula used to estimate the yield per tree by age was calculated as y = 8993.9 ln (tree age-9) 8230.3, R2 = 0.8531 (walnut in green peel) and y = 1647.1 ln (tree age-9) 1442.1, R2 = 0.8527 (dried shell walnut).

Study on Climate Change Impacts on Hydrological Response using a SWAT model in the Xe Bang Fai River Basin, Lao People's Democratic Republic (기후변화에 따른 라오스인민공화국의 시방파이 유역의 수문현상 예측에 대한 연구: SWAT 모델을 이용하여)

  • Phomsouvanh, Virasith;Phetpaseuth, Vannaphone;Park, Soo Jin
    • Journal of the Korean Geographical Society
    • /
    • v.51 no.6
    • /
    • pp.779-797
    • /
    • 2016
  • A calibrated hydrological model is a useful tool for quantifying the impacts of the climate variations and land use/land cover changes on sediment load, water quality and runoff. In the rainy season each year, the Xe Bang Fai river basin is provisionally flooded because of typhoons, the frequency and intensity of which are sensitive to ongoing climate change. Severe heavy rainfall has continuously occurred in this basin area, often causing severe floods at downstream of the Xe Bang Fai river basin. The main purpose of this study is to investigate the climate change impact on river discharge using a Soil and Water Assessment Tool (SWAT) model based on future climate change scenarios. In this study, the simulation of hydrological river discharge is used by SWAT model, covering a total area of $10,064km^2$ in the central part of country. The hydrological model (baseline) is calibrated and validated for two periods: 2001-2005 and 2006-2010, respectively. The monthly simulation outcomes during the calibration and validation model are good results with $R^2$ > 0.9 and ENS > 0.9. Because of ongoing climate change, three climate models (IPSL CM5A-MR 2030, GISS E2-R-CC 2030 and GFDL CM3 2030) indicate that the rainfall in this area is likely to increase up to 10% during the summer monsoon season in the near future, year 2030. As a result of these precipitation increases, the SWAT model predicts rainy season (Jul-Aug-Sep) river discharge at the Xebangfai@bridge station will be about $800m^3/s$ larger than the present. This calibrated model is expected to contribute for preventing flood disaster risk and sustainable development of Laos

  • PDF

Effect of Decay Rate Coefficients with Sulfur Denitrification due to Salt in Seafood Wastewater (수산물 가공폐수내 염분이 황 탈질 반응속도 상수에 미치는 영향)

  • Jo, You-Na;Choi, Yong-Bum;Han, Dong-Joon;Kwon, Jae-Hyouk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.367-377
    • /
    • 2017
  • This study examined the effects of the salinity of seafood wastewater on the sulfur denitrification process. An examination of the denitrification efficiency showed that the optimal EBCT was 1hr at an influent T-N concentration of 20mg/L or lower and 2-3hr at an T-N concentration of 30mg/L. An examination of the denitrification efficiency according to the nitrogen load showed that the legal effluent water quality criterion was satisfied when the influent load was maintained within $0.496kg/m^3/day$. On the other hand, the reactor volume increased when this was applied to the site. Therefore, the influent load should be within $0.372kg/m^3/day$ considering the denitrification and economic efficiency. At a load of $0.248{\sim}0.628kg/m^3{\cdot}day$, the k value was $0.0890{\sim}0.5032hr^{-1}$. The batch experimental results according to the $Cl^-$ concentration showed that at an influent nitrogen concentration of 30.0mg/L, the effect of the denitrification efficiency was not large below the salinity of $7,000mgCl^-/L$, but inhibition occurred above $9,000mgCl^-/L$. Calculations of the reaction rate constant according to the $Cl^-$ concentration showed that the reaction rate constant was $0.1049{\sim}0.2324hr^{-1}$ at a raw wastewater concentration of ${\sim}5,000mgCl^-/L$. In contrast, the k value was $0.1588hr^{-1}$ at $7,000mgCl^-/L$ and $0.1049hr^{-1}$ at $9,000mgCl^-/L$.

A Study on the Damage of Pine Stand by Snowfall (항설(降雪)에 의(依)한 소나무 임분(林分)의 피해(被害)에 관(關)한 연구(硏究))

  • Ma, Ho Seop;Kang, Wee Pyeong;Kim, Jai Saing
    • Journal of Korean Society of Forest Science
    • /
    • v.73 no.1
    • /
    • pp.63-69
    • /
    • 1986
  • In general, the snow injury in forestry is an unusual disaster. The degree of snow injury varies greatly depending on stand density and the local topography. This study was conducted to investigate the snow injury in analyzing the demaged by snow-fall in Jinju, Gyeongsangnamdo. The results obtained were summarized as follow; Among 466 total damaged trees, 425 trees were broken and 41 trees were uprooted, the ratio of damage were 5.22%, 2.49%, 0.92% and 0.2% for Pinus densiflora, Pinus thunbergii, Pinus rigida, Alnus hirsuta respectively. The 95% of the damage trees were in the range of 3 to 11 m for height and in the range of 3 to 20 cm for D. B. H.. The directions of the damage trees had a large influence by direction of the wind, but they shown at high tendency to aspect of the slope relatively. The 82% of the damaged trees ranged from 11 to 24 age. The ratio of broken height ($H_B/H$) indicated that the damage was most frequent in the part of stem as 24%, 45%, 31% in the part of the root collar (0.1), stem (0.2-0.4), crown (0.5-1.0) respectively. In general, trees with stem-form coefficient ($H_B/D$) over 0.7-0.8 are apt to suffer by snow damage. The average of stem-form coefficient of trees in this area was 1.06. Therefore, the ratio of damage was high tendency as 3.14%. These results indicate that it is necessary to apply pertinent tending which will increase in resistance of snow damage. As avalanches from the flank of soil erosion rise in an importance matter in present, it should also be considered to measures for prevention and restoration.

  • PDF

A Study on the Change of Road in the Changdeokgung Palace Rear Garden between Modern and Contemporary Period (근현대기 창덕궁 후원의 동선 변화에 관한 연구)

  • HA, Taeil;KIM, Choongsik
    • Korean Journal of Heritage: History & Science
    • /
    • v.54 no.2
    • /
    • pp.120-135
    • /
    • 2021
  • Changdeokgung Rear Garden is an important place to show the essence of the garden culture of the Joseon Dynasty. In the garden landscape experience, the restoration of the road completes the system of connecting the main spaces. Therefore, the restoration of the road requires accurate understanding of its creation, extinction, and maintenance. The purpose of this study was to detail the changes in the path that occurred in the Changdeokgung Palace Rear Garden from the late Joseon Dynasty to the modern and contemporary period by analyzing literature and drawing materials. For a time-series analysis, "Donggwoldo" and "Donggwoldohyeong" produced in the Joseon Dynasty, along with "Changdeokgung Plan Drawing" produced in modern and contemporary times, and aerial photographs were used. Drawings and photographs of different coordinate systems were transformed into one coordinate system in the geographic information system ArcGIS to compare changes in the movements of different periods. The results of the study are as follows. First, a total of 37 sections have been used since Japanese colonial era, of which 13 have been maintained, 14 have disappeared, and 10 have been newly established. Among the extinction sections, the road north of Neungheojeong Pavilion is considered to be an urgent place to connect the space to the garden and restore it to enjoy the scenery. In the new section, it seems necessary to establish a new alternative road or shorten the section for the connecting section between Daebodan and Okryucheon. Second, it was revealed that the biggest and most frequent changes to the road system in the garden were Japanese colonial era and renovations in the 1970s. It is worth noting the changes in the road since the 1970s, rather than Japanese colonial era, where it was difficult to manage the gardens independently. The access road to Okryucheon remained in its original shape until the 1990s, but it was renovated to its current shape due to misperception of the original shape. A project is needed to find out the cause of the change in this period and restore the damaged original shape. The biggest achievement of this study is that it revealed the changes in the garden path of Changdeokgung Palace in modern and contemporary times. The biggest achievement of this study is that it revealed the changes in the road of Changdeokgung Palace Rear Gardens in modern and contemporary times. However, there is a limitation that it has not been able to clearly present the location and shape that should be restored because it has not found data on landscaping plans or maintenance. In order to restore the road using the data revealed in this study, it seems necessary to consider realistic problems such as current space utilization, viewing system, disaster prevention and maintenance.

Study of Minimum Passage Size of Subterranean Termites (Reticulitermes speratus kyushuensis) (국내 흰개미(Reticulitermes speratus kyushuensis)의 최소 통과 직경 연구)

  • Kim, Sihyun;Lee, Sangbin;Lim, Ikgyun
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.4
    • /
    • pp.188-197
    • /
    • 2020
  • Termites play an important role as decomposers of the forest ecosystem, while simultaneously causing enormous damage to wooden structures. Currently, two species of subterranean termites have been reported in Korea, and termite damage to historical wooden buildings is occurring nationwide due to climate change, forest fertility, and the locational characteristics of historical wooden buildings. Subterranean termites make their nests underground or inside timber. Termites move underground and access wooden structures through the lower parts of the buildings, adjacent to the ground. Once termites attack the wooden structures, it not only spoils the authenticity of cultural heritage structure, but also hampers structural stability due to the decrease in the strength of the material. Therefore, it is important to prevent termite damage before it occurs. Chemical treatments are mainly used in Korea to control and prevent the damage. In foreign countries, physical barriers are also used to prevent entry to wooden buildings, along with chemical treatments. Physical barriers involve installing nets or particles that termites cannot pass through in the lower part of the building, around the pipes, and between the edges of the building or exterior walls and interior materials. Advantages of a physical barrier are that it is an eco-friendly method, maintains long-term effect after installation, and does not require the use of chemical treatments. Prior to applying physical barriers, studies into the characteristics of termite species must be undertaken. In this study, we evaluated the minimum passage size that each caste of Reticulitermes speratus kyushuensis can move through. We found that workers, soldiers, and secondary reproductive termites were able to pass through diameters of 0.7mm, 0.9mm, and 1.1mm respectively. Head height of termites was an important factor in determining the minimum passing size. Results from the current study will be used as a basis to design the mesh size for physical barriers to prevent damage by termites in historical wooden buildings in Korea.

Application of deep learning method for decision making support of dam release operation (댐 방류 의사결정지원을 위한 딥러닝 기법의 적용성 평가)

  • Jung, Sungho;Le, Xuan Hien;Kim, Yeonsu;Choi, Hyungu;Lee, Giha
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1095-1105
    • /
    • 2021
  • The advancement of dam operation is further required due to the upcoming rainy season, typhoons, or torrential rains. Besides, physical models based on specific rules may sometimes have limitations in controlling the release discharge of dam due to inherent uncertainty and complex factors. This study aims to forecast the water level of the nearest station to the dam multi-timestep-ahead and evaluate the availability when it makes a decision for a release discharge of dam based on LSTM (Long Short-Term Memory) of deep learning. The LSTM model was trained and tested on eight data sets with a 1-hour temporal resolution, including primary data used in the dam operation and downstream water level station data about 13 years (2009~2021). The trained model forecasted the water level time series divided by the six lead times: 1, 3, 6, 9, 12, 18-hours, and compared and analyzed with the observed data. As a result, the prediction results of the 1-hour ahead exhibited the best performance for all cases with an average accuracy of MAE of 0.01m, RMSE of 0.015 m, and NSE of 0.99, respectively. In addition, as the lead time increases, the predictive performance of the model tends to decrease slightly. The model may similarly estimate and reliably predicts the temporal pattern of the observed water level. Thus, it is judged that the LSTM model could produce predictive data by extracting the characteristics of complex hydrological non-linear data and can be used to determine the amount of release discharge from the dam when simulating the operation of the dam.