• 제목/요약/키워드: Nash-Sutcliffe efficiency coefficient

검색결과 123건 처리시간 0.018초

SWAT을 이용한 유역간 물이동량에 따른 영산강유역의 하천 유량 및 수질 변동 분석 (Evaluation of stream flow and water quality changes of Yeongsan river basin by inter-basin water transfer using SWAT)

  • 김용원;이지완;우소영;김성준
    • 한국수자원학회논문집
    • /
    • 제53권12호
    • /
    • pp.1081-1095
    • /
    • 2020
  • 본 연구는 SWAT (Soil and Water Assessment Tool)을 이용하여 섬진강유역 주암댐에서 영산강유역(3,371.4 km2)으로의 유역간 물이동량조절에 따른 영산강의 하천유량 및 수질변동을 분석하였다. 이를 위해, SWAT의 Inlet 기능을 이용한 물이동과 영산강유역 하수처리장들의 방류량 자료를 고려한 SWAT을 구축하여, 마륵(MR) 수위관측소와 다기능보 2개(승촌보;SCW, 죽산보;JSW) 그리고 3개의 수질관측소(광주;GJ2, 나주;NJ, 함평;HP)를 대상으로 총 14년(2005~2018) 동안의 유량과 수질을 검보정하였다. 3개 지점 하천유량의 검보정 결과, R2, NSE, RMSE, PBIAS는 각각 0.69 ~ 0.81, 0.61 ~ 0.70, 1.34 ~ 2.60 mm/day, -8.3% ~ +7.6%였으며, 수질은 SS, T-N 및 T-P 각각 R2가 각각 0.69 ~ 0.81, 0.61 ~ 0.70, 0.54 ~ 0.63의 범위를 보였다. 물이동량을 고려한 영산강유역의 하천유량은 평균 12.0 m3/sec로 나타났으며, SS, T-N 및 T-P의 평균 농도는 각각 110.5 mg/L, 4.4 mg/L, 0.18 mg/L 이었다. 물이동량의 변화에 따른 영산강의 유량과 수질의 변화를 보기 위하여, 물이동량의 증가(110%, 130%, 150%)와 감소(90%, 70%, 50%)를 적용하였다. 대표적으로 증가시나리오 130%의 경우, 하천유량과 SS의 농도는 각각 12.94 m3/sec (+7.8%), 111.26 mg/L (+0.7%) 증가, T-N과 T-P 농도는 각각 4.17 mg/L (-5.2%), 0.165 mg/L (-8.3%)로 감소하였다. 반면 감소시나리오 70%를 적용하였을 때, 하천유량과 SS의 농도는 각각 11.07 m3/sec (-7.8%), 109.74 mg/L (-0.7%)로 감소, T-N과 T-P 농도는 각각 4.68 mg/L (+6.4%), 0.199 mg/L (+10.6%) 증가하였다.

다중회귀모형과 인공신경망모형을 이용한 금강권역 강수량 장기예측 (Application of multiple linear regression and artificial neural network models to forecast long-term precipitation in the Geum River basin)

  • 김철겸;이정우;이정은;김현준
    • 한국수자원학회논문집
    • /
    • 제55권10호
    • /
    • pp.723-736
    • /
    • 2022
  • 본 연구에서는 금강권역을 대상으로 최대 12개월까지 선행예측이 가능한 월 강수량 예측모형을 구축하였으며, 예측모형 구축에는 다중회귀분석과 인공신경망의 두 가지 통계적 기법을 적용하였다. 예측인자 후보로 NOAA에서 제공하는 글로벌 기후패턴 39종과 금강권역에 대한 기상인자 8종 등 총 47종의 기후지수를 활용하였다. 예측대상월을 기준으로 과거 40년간의 월 강수량과 기후지수와의 지연상관성 분석을 통해 상관도가 높은 기후지수를 예측인자로 활용하여 다중회귀모형 및 인공신경망 모형을 구축하였다. 1991~2021년에 대해 매월 예측결과의 평균값과 관측값과의 적합도를 분석한 결과, 다중회귀모형은 PBIAS -3.3~-0.1%, NSE 0.45~0.50, r 0.69~0.70으로 분석되었으며, 인공신경망모형은 PBIAS -5.0~+0.5%, NSE 0.35~0.47, r 0.64~0.70로, 다중회귀모형에 의해 도출된 예측치의 평균값이 인공신경망모형보다 관측치에 좀 더 근접한 것으로 나타났다. 각 월의 예측범위 안에 관측치가 포함될 확률을 분석한 결과에서는 다중회귀모형이 57.5~83.6%(평균 72.9%), 인공신경망모형의 경우에는 71.5~88.7%(평균 81.1%)로 인공신경망모형 결과가 우수한 것으로 나타났다. 3분위 예측확률을 비교한 결과는 다중회귀모형의 경우에는 25.9~41.9%(평균 34.6%), 인공신경망모형은 30.3~39.1%(평균 34.7%)로 비슷하며, 두 모형 모두 평균 33.3% 이상으로 월 강수량에 대한 장기예측성을 확인 할 수 있었다. 이상과 같이 두 모형의 예측성 차이는 비교적 크지 않은 것으로 나타났으나, 예측범위에 대한 적중률이나 3분위 예측확률로부터 판단할 때 예측성에 대한 월별 편차는 인공신경망모형의 결과가 상대적으로 작게 나타났다.

SLURP 모형을 이용한 기후, 식생, 토지이용변화가 농업용 저수지 유역과 하천유역에 미치는 기여도 평가(II) - 모형의 검·보정 및 적용 - (Assessment of the Contribution of Weather, Vegetation and Land Use Change for Agricultural Reservoir and Stream Watershed using the SLURP model (II) - Calibration, Validation and Application of the Model -)

  • 박근애;안소라;박민지;김성준
    • 대한토목학회논문집
    • /
    • 제30권2B호
    • /
    • pp.121-135
    • /
    • 2010
  • 본 연구에서는 연구(I)에서 구축한 고도, 기상, 토지이용, 토양, 식생과 같은 기본 입력자료와 공도 수위관측소 상류유역을 대상으로 유역내에 포함되어 있는 농업용 저수지인 고삼과 금광저수지의 저수위, 저수량, 내용적 곡선 자료들을 이용하여 SLURP 모형의 물리적 매개변수들과 저수지의 방류량을 조정하여 저수지의 저수위와 유역 유출량을 검 보정하였다. 한편, 연구(I)에서의 편이보정과 CF 다운스케일기법에 의한 CCCma CGCM2 A2, B2 시나리오의 미래 기후자료, 개선된 CA-Markov 기법에 의한 미래 토지이용자료, 월 NDVI와 평균온도와의 선형회귀식에 의한 미래 식생자료 등을 모형에 입력하여 미래 기후변화에 따른 저수지 저수량과 유입량에 미치는 영향을 평가하고 전체적인 유역 수문(증발산량, 토양수분, 지하수충진량, 유출량)의 변화를 평가하였다. 저수지의 미래 저수량과 유입량은 가을시기에 크게 감소하는 것으로 평가되었고, 유역의 미래 연유출량, 토양수분, 지하수충진량은 다소 감소하고, 증발산량은 크게 증가하는 것으로 전망되었다. 마지막으로, 미래 기후변화, 토지이용변화와 식생변화 중 어떠한 요소가 미래의 농업용 저수지의 유입량, 저수량 및 하천유역의 수문에 큰 영향을 미치는 지를 평가하기 위해 각 요소의 기여도를 분석한 결과, 기후변화가 가장 크게 기여하는 것으로 평가되었다.