• Title/Summary/Keyword: Nash cooperative game

Search Result 47, Processing Time 0.069 seconds

Alternating Offers Bargaining Game and Wardrop's User Equilibrium (Nash의 협상게임과 Wardrop의 사용자 균형)

  • Lim, Yong-Taek
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.4 s.82
    • /
    • pp.37-45
    • /
    • 2005
  • This paper presents a relationship between Nash bargaining game and Wardrop user equilibrium, which has been widely used in transportation modeling for route choice problem. Wardrop user equilibrium assumes that drivers in road network have perfect information on the traffic conditions and they choose their optimal paths without cooperation each other. In this regards, if the bargaining game process is introduced in route choice modeling, we may avoid the strong assumptions to some extent. For such purpose, this paper derives a theorem that Nash bargaining solution is equivalent to Wardrop user equilibrium as the barging process continues and prove it with some numerical examples. The model is formulated based on two-person bargaining game. and n-person game is remained for next work.

Analysis Technique on Collusive Bidding Incentives in a Competitive Generation Market (경쟁형 전력시장에서 입찰담합의 유인에 대한 분석 기법 연구)

  • Lee, Kwang-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.6
    • /
    • pp.259-264
    • /
    • 2006
  • This paper addresses the collusive bidding that functions as a potential obstacle to a fully competitive wholesale electricity market. Cooperative game is formulated and the equation of its Nash Equilibrium (NE) is derived on the basis of the supply function model. Gencos' willingness to selectively collude is expressed through a bargain theory. A Collusion Incentive Index(CII) for representing the willingness is defined through computing the Gencos' profits at NE. In order to keep the market non-cooperative, the market operator has to know the highest potentially collusive combination among the Gencos. Another index, which will be called the Collusion Monitoring Index(CMI), is suggested to detect the highest potential collusion and it is calculated using the marginal cost functions of the Gencos without any computation of NE. The effectiveness of CMI for detecting the highest potential collusion is verified through application on many test market cases.

ON A TIME-CONSISTENT SOLUTION OF A COOPERATIVE DIFFERENTIAL TIME-OPTIMAL PURSUIT GAME

  • Kwon, O-Hun;Svetlana, Tarashinina
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.5
    • /
    • pp.745-764
    • /
    • 2002
  • In this paper we Study a time-optimal model of pursuit in which the players move on a plane with bounded velocities. This game is supposed to be a nonzero-sum group pursuit game. The main point of the work is to construct and compare cooperative and non-cooperative solutions in the game and make a conclusion about cooperation possibility in differential pursuit games. We consider all possible cooperations of the players in the game. For that purpose for every game $\Gamma(x_0,y_0,z_0)$ we construct the corresponding game in characteristic function form $\Gamma_v(x_0,y_0,z_0)$. We show that in this game there exists the nonempty core for any initial positions of the players. The core can take four various forms depending on initial positions of the players. We study how the core changes when the game is proceeding. For the original agreement (an imputation from the original core) to remain in force at each current instant t it is necessary for the core to be time-consistent. Nonemptiness of the core in any current subgame constructing along a cooperative trajectory and its time-consistency are shown. Finally, we discuss advantages and disadvantages of choosing this or that imputation from the core.

Nash Bargaining Solution for RFID Frequency Interference

  • Lee, Dong-Yul;Lee, Chae-Woo
    • ETRI Journal
    • /
    • v.33 no.6
    • /
    • pp.957-960
    • /
    • 2011
  • We present a fair and efficient solution for selfish readers with the Nash bargaining solution (NBS) to mitigate the effects of RFID frequency interference. We compare the NBS with a solution derived by the max log-sum scheme that maximizes total utility and show that for selfish and rational readers, the NBS brings success in bargaining on resource allocation between readers unlike the max log-sum scheme, although the NBS has less total payoff compared to the max log-sum scheme.

A Chinese Restaurant Game for Distributed Cooperative Caching in Small Cell Networks

  • Chen, Junliang;Wang, Gang;Wang, Fuxiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.222-236
    • /
    • 2019
  • Wireless content caching in small cell networks has recently been considered as a promising way to alleviate the congestion of the backhaul in emerging heterogenous cellular network. However, how to select files which are cached in SBSs and how to make SBSs work together is an important issue for cooperative cache research for the propose of reducing file download time. In this paper, a Cooperative-Greedy strategy (CGS) among cache-enabled small base stations (SBSs) in small cell network is proposed, in order to minimize the download time of files. This problem is formulated as a Chinese restaurant game.Using this game model, we can configure file caching schemes based on file popularity and the spectrum resources allocated to several adjacent SBSs. Both the existence and uniquencess of a Nash equilibrium are proved. In the theoretical analysis section, SBSs cooperate with each other in order to cache popular files as many as possible near UEs. Simulation results show that the CGS scheme outperforms other schemes in terms of the file-download time.

A Nash Bargaining Solution of Electric Power Transactions Reflecting Transmission Pricing in the Competitive Electricity Market (송전선이용료를 반영한 전력거래의 내쉬협상게임 해법)

  • Gang, Dong-Ju;Kim, Bal-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.7
    • /
    • pp.311-316
    • /
    • 2002
  • It has been a basic model for the present electric power industry that more than two generators compete, and thereby the market clearing price and the generation schedules are determined through the bid process. In order for this paradigm to be applicable to real electric power systems and markets, it is necessary to reflect many physical and economic constraints related to frequency and transmission in the dispatching schedule. The paper presents an approach to deriving a Nash bargaining solution in a competitive electricity market where multiple generators are playing with the system operator who mitigates the transmission congestion to minimize the total transaction cost. In this study, we take the effect of the line flows and the role of system operator into the Game. Finally, a case study has been demonstrated to verify the proposed cooperative game.

Application of the cooperative two-person nonzero-sum game for water resources development in the Tumen river basin (두만강 유역의 합리적인 수자원 개발방안 도출을 위한 2인 비영합 협력게임 적용)

  • Park, Wan-Soo;Lee, Sang-Eun;Park, Hee-Kyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.1
    • /
    • pp.63-72
    • /
    • 2010
  • This study aims to make a decision about the rational option for a multipurpose dams development of the Tumen river basin so that the adjoining countries will effectively deal with the chronic problems and fully satisfy the fast growing demand of water and power. It has been thus far investigated that the interests between North Korea and China closely depend on the selected option, and they are not well compatible with each other. These situations are defined in terms of the cooperative two-person nonzero-sum game. The Nash bargaining model is then applied to contemplate the rational option, considering two scenarios of economic growth of the North Korea. After analyzing the model, it was expected that 1) two multipurpose dams must be cooperatively developed, and 2) their benefits should be allocated according to demand of each country. The authors finally suggest that a cooperative organisation be established to effectively manage the dams beyond the border of the countries.

Bayesian Prediction for Game-structured Slotted ALOHA (게임으로 만들어진 슬롯화된 ALOHA를 위한 Bayes 풍의 예측)

  • Choi, Cheon-Won
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.1
    • /
    • pp.53-58
    • /
    • 2012
  • With a game-theoretic view, p-persistence slotted ALOHA is structured as a non-cooperative game, in which a Nash equilibrium is sought to provide a value for the probability of attempting to deliver a packet. An expression of Nash equilibrium necessarily includes the number of active outer stations, which is hardly available in many practical applications. In this paper, we thus propose a Bayesian scheme of predicting the number of active outer stations prior to deciding whether to attempt to deliver a packet or not. Despite only requiring the minimal information that an outer station is genetically able to acquire by itself, the Bayesian scheme demonstrates the competitive predicting performance against a method which depends on heavy information.

A Study about Frequency Interference among Clusters with Game Theory (게임이론을 이용한 클러스터 간 주파수 간섭 문제 연구)

  • Shin, Hyun-Chul;Lee, Dong-Yul;Lee, Chae-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2B
    • /
    • pp.269-278
    • /
    • 2010
  • In the clustering protocol, lifetime of the cluster members radically decrease because frequency interference between clusters make every cluster member consume a lot of energy to maintain or increase its transmission rate. In this paper, we analyze the frequency interference among the clusters with the game theory which deals with resource bargaining problems between players, and present a rational power allocation strategy. Both the cases that each cluster tries to selfishly occupy and cooperatively share the resource are analyzed in terms of non-cooperative and cooperative games. In simulation, we compare the cooperative game with non-cooperative game in terms of the node lifetime.

Resource Allocation in Wireless Ad Hoc Networks Using Game Theory

  • Lee, Ki-Hwan;Halder, Nilimesh;Song, Ju-Bin
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.195-196
    • /
    • 2007
  • The purpose of this paper is to analyze the resource allocation problem in a self organizing network from the viewpoint of game theory. The main focus is to suggest the model and analyze a power control algorithm in wireless ad-hoc networks using non cooperative games. Our approach is based on a model for the level of satisfaction and utility a wireless user in a self organizing network derives from using the system. Using this model, we show a distributed power control scheme that maximizes utility of each user in the network. Formulating this as a non-cooperative game we will show the feasibility of such power control as well as existence of the Nash Equilibrium achieved by the non-cooperative game.

  • PDF