• 제목/요약/키워드: Narrow Commuter Vehicle

검색결과 3건 처리시간 0.016초

폭이 좁은 차량의 안정성 향상을 위한 능동형 스티어링 기울임 제어기의 개발 (Development of the Active Steering Tilt Controller for Stability of the Narrow Commuter Vehicles)

  • 소상균
    • 한국자동차공학회논문집
    • /
    • 제6권2호
    • /
    • pp.107-117
    • /
    • 1998
  • As the traffic congestion and parking problems in urban areas are increased the tall and narrow commuter vehicles have interested as a means to increase the utilization of existing freewa- ys and parking facilities. However, in hard cornering those vehicles could reduce stability against overturning compared to conventional vehicles. This tendency can be mitigated by tilting the body toward the inside of the turn. In this paper those tilting vehicles are considered in which at speed at least, the tilt angle is controlled by steering the front wheels. In other word, if the driver turns the steering wheel the tilt controller automatically steers the road wheel to tilt the body inside of the turn. Also, the dynamic tilting vehicle model with tire slip angles is constructed by adding the roll degree of freedom. Finally, through computer simulation the behaviors of the tilting vehicles are investigated.

  • PDF

폭이 좁은 차량의 비상주행시 주행성능개선을 위한 제어시스템에 관한 연구 (A Study on the Control System of the Narrow Vehicles for Improvement of Maneuvering under Emergency Situation)

  • 소상균
    • 한국자동차공학회논문집
    • /
    • 제12권6호
    • /
    • pp.166-174
    • /
    • 2004
  • In urban area narrow commuter vehicles have attracted interest as a possible solution to reduce traffic congestion and parking problems. However, a narrow vehicle has an increased to overturn during hard cornering when compared to conventional vehicles. This tendency can be reduced by tilting it toward the inside of the turn. Two types of automatic tilting control systems which are Direct Tilt Control(DTC) and Steering Tilt Control(STC) have been developed. In this paper as one of the technique to improve the handling performance for the unusual vehicle the control system which blends both the DTC and the STC system is considered. It uses the merits of both the DTC and the STC system. As a control strategy for combination the switching control method is used. Finally, the fact that the unusual vehicle is safe under an emergency situation such as slippery road surface is proved by computer simulation.

ACTIVE DIRECT TILT CONTROL FOR STABILITY ENHANCEMENT OF A NARROW COMMUTER VEHICLE

  • Piyabongkarn, D.;Keviczky, T.;Rajamant, R.
    • International Journal of Automotive Technology
    • /
    • 제5권2호
    • /
    • pp.77-88
    • /
    • 2004
  • Narrow commuter vehicles can address many congestion, parking and pollution issues associated with urban transportation. In making narrow vehicles safe, comfortable and acceptable to the public, active tilt control systems are likely to playa crucial role. This paper focuses on the development of an active direct tilt control system for a narrow vehicle that utilizes an actuator in the vehicle suspension. A simple PD controller can stabilize the tilt dynamics of the vehicle to any desired tilt angle. However, the challenges in the tilt control system design arise in determining the desired lean angle in real-time and in minimizing tilt actuator torque requirements. Minimizing torque requirements requires the tilting and turning of the vehicle to be synchronized as closely as possible. This paper explores two different control design approaches to meet these challenges. A Receding Horizon Controller (RHC) is first developed so as to systematically incorporate preview on road curvature and synchronize tilting with driver initiated turning. Second, a nonlinear control system that utilizes feedback linearization is developed and found to be effective in reducing torque. A close analysis of the complex feedback linearization controller provides insight into which terms are important for reducing actuator effort. This is used to reduce controller complexity and obtain a simple nonlinear controller that provides good performance.