• 제목/요약/키워드: Naphthalene Sublimation Method

검색결과 45건 처리시간 0.028초

열전달과 물질전달의 유사성에 관한 연구 (A study on the Analogy between Heat Transfer and Mass Transfer)

  • 유성연;노종광;정문기
    • 대한기계학회논문집
    • /
    • 제17권10호
    • /
    • pp.2624-2633
    • /
    • 1993
  • Mass transfer experiment by naphthalene sublimation method has great advantages in measurement of local transfer coefficients in the region of a three dimensional flow or for a model of complex geometry, which is considered to be very difficult with conventional heat transfer measurements. Mass transfer data obtained by naphthalene sublimation technique are converted to the heat transfer data through heat/mass transfer analogy. This analogy is valid for a simple or laminar flow, but new insight is needed when applying to a turbulent flow or complex flow such as separation, reattachment and recirculation, The purpose of this research is to investigate how geometries and flow conditions incorporate heat/mass transfer analogy. Mass transfer experiments are performed using naphthalene sublimation technique for a flat plate, a circular cylinder, and rectangular cylinders. And mass transfer data are compared with earlier heat transfer measurements for the same geometries. Usefulness of analogy relation between heat and mass transfer is examined with these results.

다환 방향족 탄화수소(PAH) 분해 미생물 탐색을 위한 승화법의 개발 (Application of a Modified Sublimation Method to Screen for PAH-Degrading Microorganisms)

  • 권태형;김준태;김종식
    • 미생물학회지
    • /
    • 제46권1호
    • /
    • pp.109-111
    • /
    • 2010
  • 다환 방향족 탄화수소(PAH; polycyclic aromatic hydrocarbon)는 발암성, 돌연변이 유발성, 유전독성을 지니기 때문에 인체위해성이 큰 물질로 알려져 있다. 기존 PAH 분해 미생물 탐색 방법중 독성이 강한 유기용매에 PAH를 용해시켜 미생물에 직접 분무하는 분무법, 미생물과 직접 혼합하는 한천중층법은 미생물 생장에 영향을 줄 뿐만 아니라, 특히 많이 쓰이는 분무법의 경우 분무되는 PAH의 양을 조절하기가 어렵고 멸균상태를 유지하기가 힘들다는 단점이 있다. 그래서 본 논문에서는 이와 같은 단점을 보완한 방법으로 승화법(Alley, Jeremy F. and Lewis R. Brown. 2000. Use of sublimation to prepare solid microbial media with water-insoluble substrates. Appl. Environ. Microbiol. 66, 439-442)을 도입하여 적용하였다. 그 결과 상용휘발유 및 태안유류유출지 시료로부터 분리한 350분리균주 중에서 7균주가 단일 PAH 또는 복수의 PAH 분해에 관여했다. 특히 Corynebacterium sp. SK20, Rhodococcus sp. TA24, Streptomyces sp. TA27은 시험한 pyene, phenanthrene, naphthalene에, Gordonia sp. H37는 pyrene, naphthalene에, Arthrobacter sp. S49는, naphthalene, phenanthrene에 활성이 있었다.

나프탈렌 포화공기가 분사되는 막냉각 홀을 가진 터빈 블레이드 표면의 열/물질전달 계수 측정 (Heat/Mass Transfer Measurements on a Film Cooled Blade with Naphthalene Saturated Coolant)

  • 이동현;이동호;김경민;조형희;김범수
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제34회 춘계학술대회논문집
    • /
    • pp.433-436
    • /
    • 2010
  • 본 논문에서는 막냉각홀이 설치된 동익 표면에서의 열/물질전달 특성을 나프탈렌 승화법들 이용해 고찰하였다. 실험에는 저속 환형풍동이 이용되었으며, 풍동 내에는 16개의 동익으로 구성된 터빈단이 설치되어 있다. 동익의 선단부에는 막냉각을 위한 홀이 3열로 배치되어 있으며, 막냉각유체의 분사비를 1.0에서 2.0으로 조절하며 국소 열/물질전달계수를 측정하였다. 전반적인 열/물질전달 계수는 분사비가 높아짐에 따라 증가하며, 박리기포에 의해 압력면에 형성된 낮은 열/물질전달 계수를 갖는 영역은 분사비의 증가와 함께 사라진다.

  • PDF

난류촉진체에 의한 전자칩의 열전달촉진에 관한 연구 (Heat transfer enhancement in electronic modules using a turbulence promoter)

  • 박시우;정인기
    • 설비공학논문집
    • /
    • 제11권6호
    • /
    • pp.861-870
    • /
    • 1999
  • An experimental study was carried out to investigate the effects of using various shapes of turbulence promoter on the heat-transfer enhancement of 2-D and 3-D arrays of rectangular modules in a rectangular channel for design of noiseless and low-powered cooling fan in the electronic systems. Measurements of heat/mass transfer coefficients were made using a naphthalene sublimation technique, and the friction factors were measured for Reynolds numbers in the range$3.3{\time}10^3$~$1.6{\time}10^4$. Flow visualization was peformed by oil-film method. It was found that heat transfer and pressure drop increased remarkably due to the existence of the promoter. The results of the performance evaluation based on equal pumping power were showed that substantial heat-transfer enhancement was obtained at low Reynolds number range by use of a turbulence promoter.

  • PDF

수직분사각도를 갖는 직사각 막냉각홀 내부에서의 유동 및 열/물질전달 특성 (Flow and Heat Transfer Within a Rectangular Film Cooling Hole of Normal Injection Angle)

  • 홍성국;이동호;강승구;조형희
    • 대한기계학회논문집B
    • /
    • 제28권4호
    • /
    • pp.456-466
    • /
    • 2004
  • An experimental study has been conducted to investigate the flow and heat/mass transfer characteristics within a rectangular film cooling hole of normal injection angle for various blowing ratios and Reynolds numbers. The results are compared with those for the square hole. The experiments have been performed using a naphthalene sublimation method and the flow field has been analyzed by numerical calculation using a commercial code (FLUENT). The heat/mass transfer around the hole entrance region is enhanced considerably due to the reattachment of separated flow and the vortices generated within the hole. At the hole exit region, the heat/mass transfer increases because the main flow induces a secondary vortex. It is observed that the overall heat/mass transfer characteristics are similar to those for the square hole. However, the different heat/mass transfer patterns come out due to increased aspect ratio. Unlike the square hole, the heat/mass transfer on the trailing edge side of hole entrance region has two peak regions due to split flow reattachment, and heat/mass transfer on the hole exit region is less sensitive to the blowing ratios than the square hole.

연소실 냉각을 위한 충돌제트/유출냉각기법에서 유출판에서의 열전달특성 (Heat Transfer Characteristics on Effusion Plate in Impingement/Effusion Cooling for Combustor)

  • 이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제24권3호
    • /
    • pp.435-442
    • /
    • 2000
  • The present study is conducted to investigate the local heat/mass transfer characteristics for flow through perforated plates. A naphthalene sublimation method is employed to determine the local heat/mass transfer coefficients on the effusion plate. Two parallel perforated plates are arranged for the two different ways: staggered and shifted in one direction. The experiments are conducted for hole pitch-to-diameter ratios of 6.0, for gap distance between the perforated plates of 0.33 to 10 hole diameters, and for Reynolds numbers of 5,000 to 12,000. The result shows that the high transfer region is formed at stagnation region and at the mid-line of the adjacent impinging jets due to secondary vortices and flow acceleration to the effusion hole. For flows through the perforated plates, the mass transfer rates on the surface of the effusion plate are about six to ten times higher than for effusion cooling alone (single perforated plate). More uniform and higher heat/mass transfer characteristic is obtained in overall region with small gap between two perforated plates.

유출홀이 설치된 배열 충돌제트의 유동 및 열전달 특성 (Flow and Heat/Mass Transfer Characteristics of Arrays of Impingement Jets with Effusion Holes)

  • 이동호;윤필현;조형희
    • 대한기계학회논문집B
    • /
    • 제25권11호
    • /
    • pp.1606-1615
    • /
    • 2001
  • The present study has been conducted to investigate heat/mass transfer characteristics on a target plate fur arrays of circular impingement jets with and without effusion holes. A naphthalene sublimation method is employed to determine local heat/mass transfer coefficients on the target plate. The effusion holes are located at the center of four injection holes in the injection plate where the spent air is discharged through the effusion hole after impingement on the target plate. For the array jet impingement without effusion holes, the array jets are injected into the crossflow formed by upstream spent air because the impinged jets must flow to the open exit. For small gap distances, heat/mass transfer coefficients without effusion holes are very non-uniform due to crossflow effects and re-entrainments of spent air. However, uniform distributions and enhanced values of heat/mass transfer coefficients are obtained by installing the effusion holes. For large gap distances, the crossflow has little influence on heat/mass transfer characteristics on the target palate due to the large cross-sectional open area between the injection and target plates. Therefore, the distributions and levels of heat/mass transfer coefficients are almost the same for both cases.

정사각 막냉각홀 내부에서의 열/물질전달 및 유동 특성 (I) - 분사비 및 레이놀즈 수 효과 - (Heat/Mass Transfer and Flow Characteristics Within a Film Cooling Hole of Square Cross Sections (I) - Effects of Blowing Ratio and Reynolds Number -)

  • 강승구;이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제26권7호
    • /
    • pp.927-936
    • /
    • 2002
  • An experimental study has been conducted to investigate the heat/mass transfer characteristics within a film cooling hole of square cross-section for various blowing ratios and Reynolds numbers. The experiments have been performed using a naphthalene sublimation method and the flow field has been analyzed by numerical calculation using a commercial code. A duct flow enters into a film cooling hole in a cross-direction. For the film cooling hole with square cross-section, it is observed that the reattachment of separated flow and the vortices within the hole enhance considerably the heat/mass transfer around the hole entrance region. The heat/mass transfer on the leading edge side of hole exit region increases as the blowing ratios decrease because the main flow induces a secondary vortex. Heat/mass transfer patterns within the square film cooling hole are changed little with the various Reynolds numbers.

배열충돌제트에서 횡방향유동성분에 따른 열/물질전달 특성 고찰 (Effect of Arrays of Impinging Jets with Crossflow on Heat/Mass Transfer)

  • 윤필현;이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제24권2호
    • /
    • pp.195-203
    • /
    • 2000
  • The local heat/mass transfer coefficients for arrays of impinging circular air jets on a plane surface are determined by means of the naphthalene sublimation method. Fluid from the spent jets is constrained to flow out of the system in one direction. Therefore, the spent fluid makes a crossflow in the confined space. The present study investigates effects of jet-orifice-plate to impingement-surface spacing and jet Reynolds number. The spanwise- and overall-averaged heat/mass transfer coefficients are obtained by numerical integrating the local heat transfer coefficients. The local maximum heat/mass transfer coefficients move further in the downstream direction due to the increase of crossflow velocity. At the mid-way between adjacent jets, the heat/mass transfer coefficients have a small peak owing to the collision of the adjacent wall jets and are affected strongly by the crossflow. The effect of the crossflow occurs strongly at the small orifice-to-impingement surface distance.

회전하는 매끈한 정삼각 유로 내 열/물질전달 분포 측정 (Detailed Measurement of Heat/Mass Transfer in a Rotating Equilateral Triangular Channel with Smooth Walls)

  • 김경민;이동현;조형희
    • 대한기계학회논문집B
    • /
    • 제31권7호
    • /
    • pp.628-634
    • /
    • 2007
  • The present study investigated the heat/mass transfer characteristics in an equilateral triangular channel simulating the leading edge cooling passage in gas turbine blade. Using naphthalene sublimation method and pressure measurement experiments, local mass (heat) transfer and pressure coefficients were obtained. The experiments were conducted with three rotating numbers between 0.0 and 0.1; two channel orientations of $0^{\circ}$ (model A) and $30^{\circ}$ (model B); the fixed Reynolds number of 10,000. The results showed that the channel rotation caused the heat transfer discrepancy between suction and pressure sides. Due to the secondary flow induced by Coriolis force, the high heat transfer appeared on the pressure side. When the channel orientation was $30^{\circ}$ (model B), the secondary flow caused the more uniform heat transfer distribution among leading edge and inner wall on pressure side than that of the model A.