• Title/Summary/Keyword: Naphthalene Sublimation Method

Search Result 45, Processing Time 0.022 seconds

A study on the Analogy between Heat Transfer and Mass Transfer (열전달과 물질전달의 유사성에 관한 연구)

  • 유성연;노종광;정문기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2624-2633
    • /
    • 1993
  • Mass transfer experiment by naphthalene sublimation method has great advantages in measurement of local transfer coefficients in the region of a three dimensional flow or for a model of complex geometry, which is considered to be very difficult with conventional heat transfer measurements. Mass transfer data obtained by naphthalene sublimation technique are converted to the heat transfer data through heat/mass transfer analogy. This analogy is valid for a simple or laminar flow, but new insight is needed when applying to a turbulent flow or complex flow such as separation, reattachment and recirculation, The purpose of this research is to investigate how geometries and flow conditions incorporate heat/mass transfer analogy. Mass transfer experiments are performed using naphthalene sublimation technique for a flat plate, a circular cylinder, and rectangular cylinders. And mass transfer data are compared with earlier heat transfer measurements for the same geometries. Usefulness of analogy relation between heat and mass transfer is examined with these results.

Application of a Modified Sublimation Method to Screen for PAH-Degrading Microorganisms (다환 방향족 탄화수소(PAH) 분해 미생물 탐색을 위한 승화법의 개발)

  • Kwon, Tae-Hyung;Kim, Jun-Tae;Kim, Jong-Shik
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.109-111
    • /
    • 2010
  • Recent studies have described various microorganisms that can degrade PAH, however, there are currently limited methods available to screen for PAH-degrading microorganisms. To screen for PAH-degrading microorganisms, a sublimation method (Alley, Jeremy F. and Lewis R. Brown. 2000. Appl. Environ. Microbiol. 66, 439-442) was modified to produce a simple screening system. In our results, there were several bacterial species capable of pyrene degradation including genera, Coryenbacterium, Gordonia, Rhodococcus, and Streptomyces, which have been screened from 350 bacterial isolates of commercial gasoline and oil-spilled sediment by the sublimation method. The main advantage of this method is that it (i) safely deposits an even, thin and visible layer of PAH onto the agar surface without the use of solvents and (ii) the quantity of PAH sublimed onto the agar can be easily controlled. Overall, this sublimation method may be an effective and simple technique to screen for PAH-degrading microorganisms.

Heat/Mass Transfer Measurements on a Film Cooled Blade with Naphthalene Saturated Coolant (나프탈렌 포화공기가 분사되는 막냉각 홀을 가진 터빈 블레이드 표면의 열/물질전달 계수 측정)

  • Lee, Dong-Hyun;Rhee, Dong-Ho;Kim, Kyung-Min;Cho, Hyung-Hee;Kim, Beom-Su
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.433-436
    • /
    • 2010
  • In this paper, heat/mass transfer characteristics on a film cooled stationary rotor blade are investigated using the naphthalene sublimation method. A row-speed annular wind tunnel with a single annular turbine stage is used. Three rows of film cooling holes are machined on the leading edge of the test blade. Detailed heat/mass transfer distributions are measured with changing the blowing rate from 1.0 to 2.0. As the blowing ratio increases, overall heat/mass transfer increases and the lower peak formed on the pressure side were disappeared.

  • PDF

Heat transfer enhancement in electronic modules using a turbulence promoter (난류촉진체에 의한 전자칩의 열전달촉진에 관한 연구)

  • 박시우;정인기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.861-870
    • /
    • 1999
  • An experimental study was carried out to investigate the effects of using various shapes of turbulence promoter on the heat-transfer enhancement of 2-D and 3-D arrays of rectangular modules in a rectangular channel for design of noiseless and low-powered cooling fan in the electronic systems. Measurements of heat/mass transfer coefficients were made using a naphthalene sublimation technique, and the friction factors were measured for Reynolds numbers in the range$3.3{\time}10^3$~$1.6{\time}10^4$. Flow visualization was peformed by oil-film method. It was found that heat transfer and pressure drop increased remarkably due to the existence of the promoter. The results of the performance evaluation based on equal pumping power were showed that substantial heat-transfer enhancement was obtained at low Reynolds number range by use of a turbulence promoter.

  • PDF

Flow and Heat Transfer Within a Rectangular Film Cooling Hole of Normal Injection Angle (수직분사각도를 갖는 직사각 막냉각홀 내부에서의 유동 및 열/물질전달 특성)

  • Hong, Sung-Kook;Lee, Dong-Ho;Kang, Seung-Goo;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.456-466
    • /
    • 2004
  • An experimental study has been conducted to investigate the flow and heat/mass transfer characteristics within a rectangular film cooling hole of normal injection angle for various blowing ratios and Reynolds numbers. The results are compared with those for the square hole. The experiments have been performed using a naphthalene sublimation method and the flow field has been analyzed by numerical calculation using a commercial code (FLUENT). The heat/mass transfer around the hole entrance region is enhanced considerably due to the reattachment of separated flow and the vortices generated within the hole. At the hole exit region, the heat/mass transfer increases because the main flow induces a secondary vortex. It is observed that the overall heat/mass transfer characteristics are similar to those for the square hole. However, the different heat/mass transfer patterns come out due to increased aspect ratio. Unlike the square hole, the heat/mass transfer on the trailing edge side of hole entrance region has two peak regions due to split flow reattachment, and heat/mass transfer on the hole exit region is less sensitive to the blowing ratios than the square hole.

Heat Transfer Characteristics on Effusion Plate in Impingement/Effusion Cooling for Combustor (연소실 냉각을 위한 충돌제트/유출냉각기법에서 유출판에서의 열전달특성)

  • Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.435-442
    • /
    • 2000
  • The present study is conducted to investigate the local heat/mass transfer characteristics for flow through perforated plates. A naphthalene sublimation method is employed to determine the local heat/mass transfer coefficients on the effusion plate. Two parallel perforated plates are arranged for the two different ways: staggered and shifted in one direction. The experiments are conducted for hole pitch-to-diameter ratios of 6.0, for gap distance between the perforated plates of 0.33 to 10 hole diameters, and for Reynolds numbers of 5,000 to 12,000. The result shows that the high transfer region is formed at stagnation region and at the mid-line of the adjacent impinging jets due to secondary vortices and flow acceleration to the effusion hole. For flows through the perforated plates, the mass transfer rates on the surface of the effusion plate are about six to ten times higher than for effusion cooling alone (single perforated plate). More uniform and higher heat/mass transfer characteristic is obtained in overall region with small gap between two perforated plates.

Flow and Heat/Mass Transfer Characteristics of Arrays of Impingement Jets with Effusion Holes (유출홀이 설치된 배열 충돌제트의 유동 및 열전달 특성)

  • Lee, Dong-Ho;Yun, Pil-Hyeon;Jo, Hyeong-Hui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1606-1615
    • /
    • 2001
  • The present study has been conducted to investigate heat/mass transfer characteristics on a target plate fur arrays of circular impingement jets with and without effusion holes. A naphthalene sublimation method is employed to determine local heat/mass transfer coefficients on the target plate. The effusion holes are located at the center of four injection holes in the injection plate where the spent air is discharged through the effusion hole after impingement on the target plate. For the array jet impingement without effusion holes, the array jets are injected into the crossflow formed by upstream spent air because the impinged jets must flow to the open exit. For small gap distances, heat/mass transfer coefficients without effusion holes are very non-uniform due to crossflow effects and re-entrainments of spent air. However, uniform distributions and enhanced values of heat/mass transfer coefficients are obtained by installing the effusion holes. For large gap distances, the crossflow has little influence on heat/mass transfer characteristics on the target palate due to the large cross-sectional open area between the injection and target plates. Therefore, the distributions and levels of heat/mass transfer coefficients are almost the same for both cases.

Heat/Mass Transfer and Flow Characteristics Within a Film Cooling Hole of Square Cross Sections (I) - Effects of Blowing Ratio and Reynolds Number - (정사각 막냉각홀 내부에서의 열/물질전달 및 유동 특성 (I) - 분사비 및 레이놀즈 수 효과 -)

  • Kang, Seung-Goo;Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.927-936
    • /
    • 2002
  • An experimental study has been conducted to investigate the heat/mass transfer characteristics within a film cooling hole of square cross-section for various blowing ratios and Reynolds numbers. The experiments have been performed using a naphthalene sublimation method and the flow field has been analyzed by numerical calculation using a commercial code. A duct flow enters into a film cooling hole in a cross-direction. For the film cooling hole with square cross-section, it is observed that the reattachment of separated flow and the vortices within the hole enhance considerably the heat/mass transfer around the hole entrance region. The heat/mass transfer on the leading edge side of hole exit region increases as the blowing ratios decrease because the main flow induces a secondary vortex. Heat/mass transfer patterns within the square film cooling hole are changed little with the various Reynolds numbers.

Effect of Arrays of Impinging Jets with Crossflow on Heat/Mass Transfer (배열충돌제트에서 횡방향유동성분에 따른 열/물질전달 특성 고찰)

  • Yoon, Pil-Hyun;Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.195-203
    • /
    • 2000
  • The local heat/mass transfer coefficients for arrays of impinging circular air jets on a plane surface are determined by means of the naphthalene sublimation method. Fluid from the spent jets is constrained to flow out of the system in one direction. Therefore, the spent fluid makes a crossflow in the confined space. The present study investigates effects of jet-orifice-plate to impingement-surface spacing and jet Reynolds number. The spanwise- and overall-averaged heat/mass transfer coefficients are obtained by numerical integrating the local heat transfer coefficients. The local maximum heat/mass transfer coefficients move further in the downstream direction due to the increase of crossflow velocity. At the mid-way between adjacent jets, the heat/mass transfer coefficients have a small peak owing to the collision of the adjacent wall jets and are affected strongly by the crossflow. The effect of the crossflow occurs strongly at the small orifice-to-impingement surface distance.

Detailed Measurement of Heat/Mass Transfer in a Rotating Equilateral Triangular Channel with Smooth Walls (회전하는 매끈한 정삼각 유로 내 열/물질전달 분포 측정)

  • Kim, Kyung-Min;Lee, Dong-Hyun;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.7 s.262
    • /
    • pp.628-634
    • /
    • 2007
  • The present study investigated the heat/mass transfer characteristics in an equilateral triangular channel simulating the leading edge cooling passage in gas turbine blade. Using naphthalene sublimation method and pressure measurement experiments, local mass (heat) transfer and pressure coefficients were obtained. The experiments were conducted with three rotating numbers between 0.0 and 0.1; two channel orientations of $0^{\circ}$ (model A) and $30^{\circ}$ (model B); the fixed Reynolds number of 10,000. The results showed that the channel rotation caused the heat transfer discrepancy between suction and pressure sides. Due to the secondary flow induced by Coriolis force, the high heat transfer appeared on the pressure side. When the channel orientation was $30^{\circ}$ (model B), the secondary flow caused the more uniform heat transfer distribution among leading edge and inner wall on pressure side than that of the model A.