• Title/Summary/Keyword: Nanoscale fabrication

Search Result 111, Processing Time 0.033 seconds

One Step Fabrication of Organic Nanowires by using Direct Printing Method

  • Hwang, Jae.-K.;Sung, Myung-M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.158-158
    • /
    • 2011
  • A wide range of techniques for the direct-printing of functional materials have been developed for the fabrication of micro- and nanoscale structures and devices. Here we report a new direct patterning method, liquid bridge-mediated nanotransfer molding (LB-nTM), for the formation of two- or three-dimensional structures with feature sized as small as tens of nanometers over large areas up to 4". LB-nTM is based on the direct transfer of various materials from a mold to a substrate via a liquid bridge between them. The LB-nTM method was applied to the preparation of organic nanowire FETs on flexible substrates.

  • PDF

Chemical Reaction between Aluminium and graphite Crucible During the Fabrication of Spherical Monosized Al particles

  • Kwon, Hansang
    • Journal of Powder Materials
    • /
    • v.25 no.2
    • /
    • pp.99-103
    • /
    • 2018
  • Spherical monosized pure aluminum (Al) particles are successfully fabricated by the pulsated orifice ejection method (POEM). The surface reaction between Al and the graphite crucible is investigated by analysing the microstructure and chemical composition of the materials. No significant chemical reaction occurs between Al and the graphite owing to the crystalline Al oxide (${\gamma}-Al_2O_3$) layer generated in the initial state. The ${\gamma}-Al_2O_3$ layer is clearly observed in all regions between the Al particles and graphite via transmission electron microscopy and confirmed by the selected area diffraction pattern. The morphology of the ${\gamma}-Al_2O_3$ layer perfectly follows the surface morphology of the graphite crucible, which showed nanoscale roughness. This implies that molten Al could not directly contact graphite even though the surface of the crucible became rough to some extent. However, this passivation phenomenon allowed the successful fabrication of monosized pure Al particles. Therefore, POEM is a useful process at least to manufacture monosized pure Al particles.

Fabrication of carbon nanotube fibers with nanoscale tips and their field emission properties

  • Shin, Dong-Hoon;Song, Ye-Nan;Sun, Yu-Ning;Shin, Ji-Hong;Lee, Cheol-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.468-468
    • /
    • 2011
  • Carbon nanotubes (CNTs) have been considered as one of the promising candidate for next-generation field emitters because of their unique properties, such as high field enhancement factor, good mechanical strength, and excellent chemical stability. So far, a lot of researchers have been interested in field emission properties of CNT itself. However, it is necessary to study proper field emitter shapes, as well as the fundamental properties of CNTs, to apply CNTs to real devices. For example, specific applications, such as x-ray sources, e-beam sources, and microwave amplifiers, need to get a focused electron beam from the field emitters. If we use planar-typed CNT emitters, it will need several focal lenses to reduce a size of electron beam. On the other hand, the point-typed CNT emitters can be an effective way to get a focused electron beam using a simple technique. Here, we introduce a fabrication of CNT fibers with nanoscale point tips which can be used as a point-typed emitter. The emitter made by the CNT fibers showed very low turn-on electric field, high current density, and large enhancement factor. In addition, it showed stable emission current during long operation period. The high performance of CNT point emitter indicated the potential e-beam source candidate for the applications requiring small electron beam size.

  • PDF

Color Tunable Nanostructures by Polarization Control for Display Applications

  • Cho, Eun-Byurl;Ko, Yeong-Il;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.567-567
    • /
    • 2013
  • Surface plasmon resonance is the enhancement of electromagnetic wave caused by oscillation on the metal and dielectric interfaces. Surface plasmons with nanohole arrays provides an enhancedresonance for the specific wavelengths of interests. Asymmetric array of nanoscale structures can enable orientation dependent shift of resonance wavelengths when combined with the control of polarization for incident visible light, thus providing color tunability. Appropriate lattice constants along the direction of polarization in rectangular nanohole arrays can determine the resonance condition generating red (R), green (G), and blue (B) colors and potentially be applied to display applications. In ourprevious report, we have optimized the ion beam nanomachining conditions to fabricate the nanostructures on the metal film. We apply the fabrication conditions to make nanoscale hole arrays using 100 nm thick gold layer on the glass substrate with the optimal design of periodicities along x, y, and diagonal directions of a=440 nm, b=520 nm, c=682 nm, and the hole diameter of d=200 nm. Using the reflective light in dark field mode of optical microscope, we can observe different colors. When the polarizer is paralleled along a, b, or c direction, the represented color is changed to R, G, and B, respectively. We further map the color using i1 to correlate the conditions of the nanohole arrays with their characteristic color.

  • PDF

Nanoplasmonics: Enabling Platform for Integrated Photonics and Sensing

  • Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.75-75
    • /
    • 2015
  • Strong interactions between electromagnetic radiation and electrons at metallic interfaces or in metallic nanostructures lead to resonant oscillations called surface plasmon resonance with fascinating properties: light confinement in subwavelength dimensions and enhancement of optical near fields, just to name a few [1,2]. By utilizing the properties enabled by geometry dependent localization of surface plasmons, metal photonics or plasmonics offers a promise of enabling novel photonic components and systems for integrated photonics or sensing applications [3-5]. The versatility of the nanoplasmonic platform is described in this talk on three folds: our findings on an enhanced ultracompact photodetector based on nanoridge plasmonics for photonic integrated circuit applications [3], a colorimetric sensing of miRNA based on a nanoplasmonic core-satellite assembly for label-free and on-chip sensing applications [4], and a controlled fabrication of plasmonic nanostructures on a flexible substrate based on a transfer printing process for ultra-sensitive and noise free flexible bio-sensing applications [5]. For integrated photonics, nanoplasmonics offers interesting opportunities providing the material and dimensional compatibility with ultra-small silicon electronics and the integrative functionality using hybrid photonic and electronic nanostructures. For sensing applications, remarkable changes in scattering colors stemming from a plasmonic coupling effect of gold nanoplasmonic particles have been utilized to demonstrate a detection of microRNAs at the femtomolar level with selectivity. As top-down or bottom-up fabrication of such nanoscale structures is limited to more conventional substrates, we have approached the controlled fabrication of highly ordered nanostructures using a transfer printing of pre-functionalized nanodisks on flexible substrates for more enabling applications of nanoplasmonics.

  • PDF

Thermal Design and Batch Fabrication of Full SiO2 SThM Probes for Sensitivity Improvement (주사탐침열현미경의 감도향상을 위한 전체 실리콘 산화막 열전탐침의 열적설계 및 일괄제작)

  • Jaung, Seung-Pil;Kim, Kyeong-Tae;Won, Jong-Bo;Kwon, Oh-Myoung;Park, Seung-Ho;Choi, Young-Ki;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.10
    • /
    • pp.800-809
    • /
    • 2008
  • Scanning Thermal Microscope (SThM) is the tool that can map out temperature or the thermal property distribution with the highest spatial resolution. Since the local temperature or the thermal property of samples is measured from the extremely small heat transferred through the nanoscale tip-sample contact, improving the sensitivity of SThM probe has always been the key issue. In this study, we develop a new design and fabrication process of SThM probe to improve the sensitivity. The fabrication process is optimized so that cantilevers and tips are made of thermally grown silicon dioxide, which has the lowest thermal conductivity among the materials used in MEMS. The new design allows much higher tip so that heat transfer through the air gap between the sample-probe is reduced further. The position of a reflector is located as far away as possible to minimize the thermal perturbation due to the laser. These full $SiO_2$ SThM probes have much higher sensitivity than that of previous ones.

Fabrication Process of Single CuO Nanowire Devices

  • Vu, Xuan Hien;Jo, Kwang-Min;Kim, Se-Yun;Lee, Joon-Hyung;Kim, Jeong-Joo;Heo, Young-Woo
    • Applied Science and Convergence Technology
    • /
    • v.23 no.3
    • /
    • pp.134-138
    • /
    • 2014
  • One-dimensional nanostructures such as nanowires have been extensively investigated as a promising type of material for applications of nanoscale technology. The fabrication of single-nanowire devices are consequently important and interesting. This study introduced a feasible method for growing CuO nanowires on Cu foils. The nanowires had diameters of 10~150 nm and lengths of more than $7{\mu}m$ and were grown by means of thermal oxidation in a vacuum. They were entirely and uniformly grown over the Cu foil surfaces and could be extracted and dispersed in an ethanol solution for further purposes. In addition, a simple fabrication method for realizing device functionality from a single CuO nanowire was reported. Fabricated devices were carefully checked by field-emission scanning electron microscopy (SEM). The probability of the realization of a single-CuO-nanowire device relative to that of all other types was estimated to be around 25%. Finally, the I-V characteristics of the devices were analyzed.

SiGe Nanostructure Fabrication Using Selective Epitaxial Growth and Self-Assembled Nanotemplates

  • Park, Sang-Joon;Lee, Heung-Soon;Hwang, In-Chan;Son, Jong-Yeog;Kim, Hyung-Jun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.24.2-24.2
    • /
    • 2009
  • Nanostuctures such as nanodot and nanowire have been extensively studied as building blocks for nanoscale devices. However, the direct growth of the nanostuctures at the desired position is one of the most important requirements for realization of the practical devices with high integrity. Self-assembled nanotemplate is one of viable methods to produce highly-ordered nanostructures because it exhibits the highly ordered nanometer-sized pattern without resorting to lithography techniques. And selective epitaxial growth (SEG) can be a proper method for nanostructure fabrication because selective growth on the patterned openings obtained from nanotemplate can be a proper direction to achieve high level of control and reproducibility of nanostructucture fabrication. Especially, SiGe has led to the development of semiconductor devices in which the band structure is varied by the composition and strain distribution, and nanostructures of SiGe has represented new class of devices such nanowire metal-oxide-semiconductor field-effect transistors and photovoltaics. So, in this study, various shaped SiGe nanostructures were selectively grown on Si substrate through ultrahigh vacuum chemical vapor deposition (UHV-CVD) of SiGe on the hexagonally arranged Si openings obtained using nanotemplates. We adopted two types of nanotemplates in this study; anodic aluminum oxide (AAO) and diblock copolymer of PS-b-PMMA. Well ordered and various shaped nanostructure of SiGe, nanodots and nanowire, were fabricated on Si openings by combining SEG of SiGe to self-assembled nanotemplates. Nanostructure fabrication method adopted in this study will open up the easy way to produce the integrated nanoelectronic device arrays using the well ordered nano-building blocks obtained from the combination of SEG and self-assembled nanotemplates.

  • PDF

Nano-Structures on Polymers Evolved by Ion Beam/Plasma

  • Moon, Myoung-Woon;Lee, Kwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.76-76
    • /
    • 2012
  • Surface engineering of polymers has a broad array of scientific and technological applications that range from tissue engineering, regenerative medicine, microfluidics and novel lab on chip devices to building mechanical memories, stretchable electronics, and devising tunable surface adhesion for robotics. Recent advancements in the field of nanotechnology have provided robust techniques for controlled surface modification of polymers and creation of structural features on the polymeric surface at submicron scale. We have recently demonstrated techniques for controlled surfaces of soft and relatively hard polymers using ion beam irradiation and plasma treatment, which allows the fabrication of nanoscale surface features such as wrinkles, ripples, holes, and hairs with respect to its polymers. In this talk, we discuss the underlying mechanisms of formation of these structural features. This includes the change in the chemical composition of the surface layer of the polymers due to ion beam irradiation or plasma treatment and the instability and mechanics of the skin-substrate system. Using ion beam or plasma irradiation on polymers, we introduce a simple method for fabrication of one-dimensional, two-dimensional and nested hierarchical structural patterns on polymeric surfaces on various polymers such as polypropylene (PP), polyethylene (PE), poly (methyl methacrylate) PMMA, and polydimethylsiloxane (PDMS).

  • PDF

Curve-typed PMMA Nanochannel Fabrication using Polymer Layer Transfer and Collapse Technique (폴리머 층 전사 및 처짐 현상을 이용한 곡선 형태의 PMMA 나노채널 제작)

  • Cho, Young-Hak;Kim, Sung-Dong;Hwang, Ji-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.114-120
    • /
    • 2012
  • We present a simple and low-cost method to fabricate poly(methyl-methacrylate) (PMMA) nanochannels with various shapes by combining the standard optical lithography with a PMMA layer transfer and collapse technique. We utilized PMMA membrane reflowing/collapsing phenomena into microchannels to fabricate nanochannels at both corners of arbitrarily-shaped microchannels. This allows nanochannels with various shapes such as curved nanochannels as well as straight nanochannels to be easily fabricated since the shape of the microchannel determines the shape of the nanochannels. This nanochannel fabrication method is simple, flexible, and low-cost since the standard optical lithography with low-resolution optical masks can be used to fabricate nanoscale channels as small as 100 nm wide with various shapes. Also, the sealing of nanochannels can be naturally achieved while the nanochannels are formed through the polymer layer transfer and collapse.