• Title/Summary/Keyword: Nanophase particle

Search Result 7, Processing Time 0.022 seconds

Preparation of Nanophase Titania Film by Plasma Spraying

  • Zhu, Yingchun;Huang, Minhui
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.23-26
    • /
    • 1997
  • Nanophase titania film was obtained by plasma spraying. The structure of titania film was investigated with transmission electron microscopy (TEM). It was found taht the film was composed of grains with mean particle size of 15nm. The crystal structure of nanophase titania film was found to be anatase phase by electron diffraction.

  • PDF

Effect of Grain Growth Inhibitor on Sintering of Nanophase WC-10wt%Co (초미립 WC-l0wt%Co 초경 분말의 소결시 입자 성장 억제제 첨가 효과 연구)

  • 김병기
    • Journal of Powder Materials
    • /
    • v.1 no.2
    • /
    • pp.208-216
    • /
    • 1994
  • A radically new approach to the in situ synthesis of the consituent phases of a composite structure has enabled the production of a new WC/Co materials with an ultrafine microstructure. The process for synthesizing nanophase WC/Co powders consists of spray drying from solution to form a homogeneous precursor powder, and thermochemical conversion of the precursor powder to the nanophase WC/Co powder. Near theoretical density of pure nanophase WC-10 wt%Co has been obtained in only 30 sec at 140$0^{\circ}C$. But WC particles were grown up very rapidly with longer sintering time to get full density. To overcome coarsening of WC particle during sintering, VC, TaC and VC/TaC were used as the grain growth inhibitor with different amount respectively. VC/TaC doped WC-10 wt%Co was shown superior hardness and TRS and microstructure was maintained ultrafine scale (average WC size is less than 0.1 ${\mu}{\textrm}{m}$).

  • PDF

Electron Microscopy of the Al and $UO_2$ Nanophase Particles Synthesized in Horse Spleen Ferritin (말 비장 Ferritin에서 합성된 Al과 $UO_2$ 나노 입자의 전자현미경 연구)

  • Mun, Hyang-Ran;Kim, Kyung-Suk;Lee, Jung-Hoo
    • Applied Microscopy
    • /
    • v.29 no.3
    • /
    • pp.323-329
    • /
    • 1999
  • Synthesis of inorganic nanophase particles was performed to verify and understand the binding of non-ferrous metal ions including Al and $UO_2$ to the apoferritin molecules. Reconstituted inorganic particles of Al or $UO_2$ were identified by TEM as discrete electron dense cores encapsulated within the protein shell. The corresponding EDXA spectra confirm the presence of metal ions in the reconstituted ferritin. The Al cores of ferritin has been studied by TEM for the first time. Bimetallic cores with Al/Fe and $UO_2/Al$ were also produced and examined under TEM. Mixed metal cores encapsulated in the protein shell are well formed and its corresponding EDXA spectra also confirm the presence of metal ions in the mineral cores. Therefore, the present study proves that ferritin can be used to synthesize inorganic nanophase particles of Al and $UO_2$.

  • PDF

Nanophase Catalyst Layer for Direct Methanol Fuel Cells

  • Chang Hyuk;Kim Jirae
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.4
    • /
    • pp.172-175
    • /
    • 2001
  • Nanophase catalyst layer for direct methanol fuel cell has been fabricated by magnetron sputtering method. Catalyst metal targets and carbon were sputtered simultaneously on the Nafion membrane surface at abnormally higher gas (Ar/He mixture) pressure than that of normal thin film processing. They could be coated as a novel structure of catalyst layer containing porous PtRu or Pt and carbon particles both in nanometer range. Membrane electrode assembly made with this layer led to a reduction of the catalyst loading. At the catalyst loading of 1.5mg $PtRu/cm^2$ for anode and 1mg $Pt/cm^2$ for cathode, it could provide $45 mW/cm^2$ in the operation at 2 M methanol, 1 Bar Air at 80"C. It is more than $30\%$ increase of the power density performance at the same level of catalyst loading by conventional method. This was realized due to the ultra fine particle sizes and a large fraction of the atoms lie on the grain boundaries of nanophase catalyst layer and they played an important role of fast catalyst reaction kinetics and more efficient fuel path. Commercialization of direct methanol fuel cell for portable electronic devices is anticipated by the further development of such design.

Preparation and Physical Characterizations of Superparamagnetic Maghemite Nanoparticles

  • Yoon, Sunghyun
    • Journal of Magnetics
    • /
    • v.19 no.4
    • /
    • pp.323-326
    • /
    • 2014
  • Superparamagnetic maghemite nanoparticles were prepared by chemical co-precipitation, followed by a temperate oxidation stage, and investigated using FE-SEM, XRD, TGA, VSM, and M$\ddot{o}$ssbauer spectroscopy. Through SEM image and XRD analysis, its average particle size was found to be 13.9 nm. While VSM magnetic measurement showed typical superparamagnetic behavior at room temperature, M$\ddot{o}$ssbauer spectroscopic investigation revealed that non-vanishing magnetic hyperfine structure were retained. Cation distribution estimated from M$\ddot{o}$ssbauer spectroscopy confirmed the formation of maghemite nanophase in the sample.

Color Ratios of Parallel-Component Polarization as a Maturity Indicator for the Lunar Regolith

  • Kim, Sungsoo S.;Jung, Minsup;Sim, Chae Kyung;Kim, Il-Hoon;Park, So-Myoung;Jin, Ho
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.62.1-62.1
    • /
    • 2015
  • Polarization of the light reflected off the Moon provides information on the size and composition of the particles in the lunar regolith. The mean particle size of the regolith can be estimated from the combination of the albedo and degree of polarization, while the color ratio of the parallel-component polarization (CP) has been suggested to be related to the amount of nanophase metallic iron (npFe^0) inside the regolith particles. Both the mean size and npFe^0 abundance of the particles have been used as maturity indicators of the regolith since sustained impacts of high energy particles and micro-meteoroids cause comminution of particles and production of npFe^0. Based on our multispectral polarimetric observations of the whole near side of the Moon in the U, B, V, R, and I bands, we compare the maps of the mean particle size, CP, and the optical maturity (OM). We find that the mean particle size map is sensitive to the most immature (~0.1 Gyr) soil, the OP map to the intermediate immaturity (a few 0.1 Gyr) soil, and the CP map to the least immature (~1 Gyr) soil.

  • PDF

MAGNETISM OF NANOPHASE IRON PARTICLES LASER EVAPORATED IN A CONTROLLED OXYGEN ATMOSPHERE

  • Turkki, T.;Jonsson, B.J.;Strom, V.;Medelius, H.;El-Shall, M.S.;Rao, K.V.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.745-748
    • /
    • 1995
  • Magnetic nanoparticles of iron and iron oxide have been prepared in a modified upward thermal diffusion cloud chamber using pulsed laser evaporation. SEM/TEM studies of these particles reveal a size distribution with a mean diameter of about $60\;{\AA}$. FTIR spectrum measurements are used to investigate the difference in oxidation level between nanoparticles prepared at different partial oxygen pressures. The complex magnetic behaviour of these particles was studied using DC- and AC-susceptibility measurements. All samples exhibit superparamagnetism with blocking temperatures ranging from 50 K to above room temperature. The coercivity fields as well as the dependence of the blocking temperature on measuring frequency have been studied. magnetic anisotropy constants are found to be one order of magnitude higher than is known for the bulk values. The mean particle size estimated from the magnetic data is found to be in perfect agreement with the TEM observations.

  • PDF