• Title/Summary/Keyword: Nanopaticle

Search Result 10, Processing Time 0.022 seconds

Characteristic Analysis of Pollutant Emission from Diesel Locomotive Engine (디젤기관차 엔진에서 배출되는 오염물질의 특성 분석)

  • 박덕신;정우성;정병철;김동술
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.561-566
    • /
    • 2002
  • As the air pollution caused by diesel vehicles goes worse, so non-road vehicles exhaust gas standards are more strict in an foreign countries. There is growing evidence that diesel vehicles could play the important role in determining health effects. Most of the particle number emitted by diesel engines is in the nanopaticle range, D$\_$p/ < 50nm, while most of the mass is in the accumulation mode, 50nm < D$\_$p/ < 1000nm range. The aim of this work was to investigate pollutants in the exhaust of railroad diesel rolling stock under load tests.

  • PDF

Enhancement of Antifungal Activity of Anthracnose in Pepper by Nanopaticles of Thiamine Di-lauryl Sulfate (비타민 B1 유도체(Thiamine Di-lauryl Sulfate:TDS)의 나노입자화를 통한 고추탄저병균의 항진균 활성 증진)

  • Seo, Yong-Chang;Cho, Jeong-Sub;Jeong, Hae-Yoon;Yim, Tae-Bin;Cho, Kyoung-Sook;Lee, Tae-Woo;Jeong, Myoung-Hoon;Lee, Gang-Hyeong;Kim, Sung-Il;Yoon, Won-Byung;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.3
    • /
    • pp.198-204
    • /
    • 2011
  • This study was performed to enhance antifungal activity of anthracnose in chili pepper by nanopaticles of thiamine di-lauryl sulfate (TDS) through high pressure homogenization process. Yield of TDS was 79.14% by reaction of thiamine hydrochloride and sodium lauryl sulfate. TDS nanopaticle solution was manufactured through high pressure homogenization process. The turbidity of nanoparticles solution was increased with increasing the concentration of TDS, and nanoparticles solution of 100 ppm was showed the highest turbidity with absorbance of 3.212. The size of nanoparticles solution was measured as average 258.6 nm by DLS. Nanoparticles solution of 100 ppm showed growth inhibition activity with higher than about 80% compared to the control group against Colletotrichum gloeosporioides. Finally, nanoparticles solution was increased effectively the penetration of the TDS nanopaticles on attached cell membrane of hyphae and started to destruct the cells under microscope observation. Consequently, we suggested that the TDS nanoparticle solution by high pressure homogenization process might be suitable biochemical pesticides for improving the antifungal activities against anthracnose in pepper.

Formation of $TiO_2$ Nanoparticle by Photochemical Synthesis(III) (광화학 합성에 의한 $TiO_2$ 나노입자 형성 (III))

  • Jeong, Jae-Hoon;Moon, Jeong-Oh;Moon, Byung-Kee;Son, Se-Mo;Chung, Su-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.756-759
    • /
    • 2002
  • Nanoparticles of titanium dioxide$(TiO_2)$ were prepared by photochemical synthesis. Surface structure, morphology and particle size of $TiO_2$ thin films were investigated by UV-VIS spectrophotometer, scanning electron microscopy(SEM) and transmission electron microscopy(TEM). All process was prepared at room temperature. The absorption peak of the films was showed at 360nm and $TiO_2$ nanopaticle size was observed at about 20~30nm. Electron diffraction ring patterns of $TiO_2$ nanoparticles and crystallographic spacing were observed by TEM. As a result, crystallographic spacing was about 3.6A in HR-TEM micrographs.

  • PDF

Effect of $TiO_2$ Nanoparticle on the Mechanical and Thermal Properties of Epoxy Resin Composites (에폭시수지 복합재료의 기계적.열적 성질에 대한 $TiO_2$ 나노입자의 영향)

  • Moon, Y.J.;Choi, J.Y.;Kim, B.A.;Moon, C.K.
    • Journal of Power System Engineering
    • /
    • v.14 no.4
    • /
    • pp.68-75
    • /
    • 2010
  • The effect of dispersion agent, the content and size of nanoparticle on the mechanical and thermal properties has been investigated in $TiO_2$ nanoparticle/epoxy resin composites(nanocomposites). The weight fraction of fabricated nanocomposites were 0, 1, 3, 5%, respectively. The glass transition temperature was lower than pure epoxy resin and decreased with the increasing of nanopaticle content. This is considered that the cross link of epoxy resin during solidification was hindered by the presence of nanoparticles. Nanocomposites of 3wt% content with dispersion agent showed the best tensile strength. The tensile strength of 20㎚ $TiO_2$ nanocomposites were higher than one of 200nm $TiO_2$ nanocomposites.

Effect of Solubility of Thiamine Dilauryl Sulfate Solution through the Manufacture of the Nano Paticles on Antifungal Activity (비타민 B1 유도체 Thiamine Dilauryl Sulfate의 나노 입자 제조를 통한 수용액의 용해도에 따른 항진균 활성 평가)

  • Seo, Yong-Chang;Choi, Woon-Yong;Lee, Choon-Geun;Cho, Jeong-Sub;Yim, Tae-Bin;Jeong, Myoung-Hoon;Kim, Sung-Il;Yoon, Won-Byung;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.6
    • /
    • pp.464-471
    • /
    • 2011
  • Conventional Thiamine Dilauryl Sulfate (TDS) powder has a low stability. In order to solve this problem, this study was performed to improve the solubility of TDS. The process for enhance solubility of TDS was nano grinding mill and ultrasonic dispersion process. TDS paticle was manufactured to nano size through nano grinding mill process. The size of TDS nanoparticle was measured as average 220 nm by DLS. And The TDS nanoparticle in water solution manufactured through ultrasonic dispersion process. The TDS nanoparticle in water solution was showed the highest solubility with 40% ethanol. These results was increased the concentration of TDS from 200 ppm to 240 ppm in water solution. The TDS nanoparticle in water solution showed diameter of Colletotrichum gloeosporioides growth with smaller than about 1.56 cm compared to the TDS paticle in water solution at same concentration. Also, TDS nanoparticle in water solution showed growth inhibition activity as 59.2% with higher than about 10% compared to the TDS paticle water solution in same concentration. Finally, TDS nanoparticle in water solution was increased solubility through nano grinding mill and ultrasonic dispersion process. Also, the increase of concentration in TDS nanopaticle in water solution according to solubility enhancement lead to an result enhancement of antifungal activity. Consequently, we suggested that the TDS nanoparticle in water solution was more effective than TDS particle in water solution owing to the sub-cellular particle size, ability to persistence and targeting to cell membrane of Colletotrichum gloeosporioides. Furthermore we expected the applicating possibility with bio pesticide.

Nanoparticle Effect on Durability of Carbon fiber/Epoxy Composites in Saline Water Environment (염수환경에서 탄소섬유/에폭시 복합재료의 내구성에 미치는 나노입자의 영향)

  • Kim, Bu-Ahn;Moon, Chang-Kwon
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.64-68
    • /
    • 2014
  • This study was conducted to investigate the durability of carbon fiber/epoxy composites (CFRP) in a saline water environment. The carbon fiber/epoxy composites were modified to use nanoparticles such as carbon nanotubes and titanum oxide. These hybrid composites were exposed to a saline water environment for a certain period. The weight gain according to the immersion time, a quasi-static tensile test, and micro-graphic characterization were used to investigate the samples exposed to the saline water environment. The weight gains increased with increasing immersion time. The weight gains of the hybrid composites were lower than that for pure CFRP throughout the entire immersion time. The tensile strengths decreased with increasing immersion time. The tensile strengths of the hybrid composites were higher than that of the pure CFRP throughout the entire immersion time. The pure CFRP was observed to be more degraded than the hybrid composites in the saline water environment. Therefore, it was concluded that the addition of nanoparticles to CFRP could lead to improved durability in a saline water environment.

FIELD EMISSION FROM TRIODE FIELD EMITTER WITH PLANAR CARBON-NANOPARTICLE CATHODE

  • Park, Kyung-Ho;Seo, Woo-Jong;Lee, Soon-Il;Koh, Ken-Ha
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.309-312
    • /
    • 2002
  • Triode field emitters with planar-carbon-nanopaticle (CNP) cathodes were successfully fabricated using the conventional photolithography and the hotfilament chemical vapor deposition. Electron emission from a CNP triode emitter with a 12-${\mu}m$-diameter gate hole started at the gate voltage of 45 V, and the anode current reached the level of ${\sim}120$ nA at the gate voltage of 60 V, respectively. For the quantitative analysis of the Fowler-Nordheim (F-N) type emission from a CNP triode emitter, we carried out 2dimensional numerical calculation of electrostatic potential using the finite element method. As it turned out, a radial variation of electric field was very important to account for the emission from a planar emitting layer. By assuming the graphitic work function of 5 eV for CNPs, we were able to extract a consistent set of F-N parameters, together with the radial position of emitting sites.

  • PDF

Preparation of PEBAX-5513/Ag Nanoparticles/7,7,8,8-tetracyanoquinodimethane Composites for Olefin Separation and Analysis of Anions (올레핀 분리용 PEBAX-5513/Ag Nanoparticles/7,7,8,8-tetracyanoquinodimethane 복합체 제조 및 음이온 효과 분석)

  • Kim, Soyoung;Kang, Sang Wook
    • Membrane Journal
    • /
    • v.29 no.5
    • /
    • pp.246-251
    • /
    • 2019
  • Facilitated transport membranes using silver nanoparticles as carriers for olefin/paraffin separation have been interested. $AgBF_4$ has been used as a precursor of silver nanoparticles in previous studies. However, relatively expensive $AgBF_4$ is not suitable for commercialization, and thus, PEBAX-5513/AgNPs (precursor: $AgClO_4$)/7,7,8,8-tetracyanoquinodimethane (TCNQ) composite membranes were prepared using silver nanopaticles with relatively inexpensive $AgClO_4$ precursors. Composite membranes of various compositions were prepared for PEBAX-5513/AgNPs/TCNQ composites, but no separation performance was observed. As a result of FT-IR analysis, it was confirmed that silver nanoparticles were formed in the PEBAX-5513 polymer and the surface of Ag nanoparticles was polarized by TCNQ, but the formed silver nanoparticles were not stabilized. From these results, it was concluded that the anion of the precursor plays an important role in the olefin/paraffin separation.

In vivo Acute Toxicity of Silicon Dioxide Nanoparticle to Mice after Intraperitonial Injection (이산화규소 나노입자의 마우스 복강 내 주입에 의한 급성독성)

  • Cha, Chun-Nam;Jung, Won-Chul;Lee, Yeo-Eun;Yoo, Chang-Yeul;Kim, Gon-Sup;Kim, Eui-Kyung;Kim, Suk;Lee, Hu-Jang
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.1
    • /
    • pp.43-48
    • /
    • 2011
  • For the application of nano-sized material in various fields, the evaluation of nano-sized material toxicity is important. In the present study, various concentrations of 200 nm-sized silicon dioxide nanoparticle suspension were intraperitonially injected into mice to identify the toxicity of silicon dioxide nanoparticle in vivo. In the hematological analysis of group II treated with silicon dioxide nanoparticle 100 mg/kg body weight, lymphocytes and monocytes were significantly different compared to the control group. In group III treated with silicon dioxide nanoparticle 200 mg/kg body weight, lymphocytes, monocytes and hemoglobin were significantly different compared to the control group. In blood biochemical analysis of group III, the concentration of AST, ALT, BUN, and creatinine were significantly different compared to the control group. Histopathologic examination of the kidney indicated a mild injury only in mice received 200 mg/kg silicon dioxide nanoparticle. According to the results of the present study, the significant differences in the hematological and blood biochemical analyses and abnormal histopathological findings in the mouse kidney may have been related to exposure to silicon dioxide nanoparticle.

Review of the CO2 Geological Storage Using Nanoparticle-stabilized CO2 Foam (나노입자기반 CO2 폼을 이용한 CO2 지중저장에 대한 기술적 고찰)

  • Son, Han Am
    • Economic and Environmental Geology
    • /
    • v.53 no.2
    • /
    • pp.213-220
    • /
    • 2020
  • When CO2 foam is injected into the saline aquifer, the relative permeability of CO2 decreases and its viscosity increases, thereby reducing mobility in porous media and ultimately improving CO2 storge with enhanced sweep efficiency. In general, surfactants were used to fabricate CO2 foam. Recently, nanoparticles have been used to form stable foam than surfactant. This paper introduces CO2 storage technology using nanoparticle stabilized CO2 foam. If the surface of the hydrophilic nanoparticles is partially modified into a CO2-philic portion, the particles have an affinity for CO2 and water, thus forming a stable CO2 foam even in deep saline aquifers under high temperature and high salinity conditions, thereby it can be stored in the pores of the rock. In terms of economics, injection method using nanopaticle-stabilized CO2 foam is more expensive than the conventional CO2 injection, but it is estimated that it will have price competitiveness because the injection efficiency is improved. From an environmental point of view, it is possible to inject chemical substances such as surfactants and nanomaterials into aquifers or reservoirs for specific purposes such as pollutant removal and oil production. However, some studies have shown that nanoparticles and surfactants are toxic to aquatic animals, so environmentally proven substances should be used. Therefore, further research and development will be needed to study the production and injection of nanoparticle-stabilized CO2 foam that are environmentally safe and economically reasonable.