• Title/Summary/Keyword: Nanofiltration

Search Result 210, Processing Time 0.023 seconds

A study on nanoparticle filtration characteristics of multilayer meltblown depth filters

  • Lee, Kang-San;Hasolli, Naim;Jeon, Seong-Min;Lee, Jae-Rang;Kim, Kwang-Deuk;Park, Young-Ok;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.12 no.3
    • /
    • pp.51-56
    • /
    • 2016
  • Due to recent development in nanotechnology and increasing usage and production of nanomaterials, numerous studies related to environment, sanitation and safety handling of nanoparticle are being conducted. Since nanoparticles can be easily absorbed into human bodies through breathing process, based on their toxic substances and their large specific surface, these particles can cause serious health damage. Therefore, to reduce nanoparticle emissions, nanofiltration technology is becoming a serious issue. Filtration is a separation process during which a fluid passes through a barrier by removing the particles from the stream. Barrier filters can be made of various materials and shapes. One of the most common type of barrier filter is the fibrous filter. Fibrous filters are divided in two types: nonwoven and woven fabrics. Polypropylene is a thermoplastic material, used as a base material for melt blown nonwoven fabric. In this study, we examined filtration property of KCl nanoparticles with a mean particle diameter of 75 nm using multilayer meltblown filter samples. These experiments verify that the penetration of nanoparticle in the filter correlate with pressure drop; the meltblown layer MB1 has the greatest effect on dust collection efficiency of the filter. Among all tested samples, dust collection efficiency of 2-layer filter was best. However, when considering the overall pressure drop and dust collection efficiency, the 4-layer filter has the highest quality factor for particles smaller than 70 nm.

Synthesis of New Draw Solute Based on Polyethyleneimine for Forward Osmosis (정삼투를 위한 Polyethyleneimine 기반 유도용질 제조)

  • Lee, Hye-Jin;Choi, Jin-Il;Kwon, Sei;Kim, In-Chul
    • Membrane Journal
    • /
    • v.28 no.4
    • /
    • pp.286-295
    • /
    • 2018
  • A novel multi-valent salt based on polyethyleneimine having molecular weight of 800 (PEI 800) has been synthesized and characterized as forward osmosis draws solute. A reaction intermediate was synthesized by the neutralization reaction of polyethyleneimine and methyl acrylate, and was hydrolyzed with potassium hydroxide to synthesize a water soluble carboxylic acid (potassium salt) polyethyleneimine. NMR spectrometry, viscometry measurements and osmometry measurements was performed to characterize the draw solute. Forward osmosis experiments were done to know whether the solute could be used as a draw solute or not. The result shows comparable water flux and lower reverse salt flux compared with NaCl as a draw solute. We have also demonstrated recycling of the draw solute in the FO-NF integrated process.

Analysis of Neurotoxins, Anatoxin-a, Saxitoxin in Algae Cultured and Algae in Dam Reservoir and its Water Treatment (배양조류 및 댐 저수지 조체중 신경독소 Anatoxin-a, Saxitoxin류의 분석 및 수처리방안)

  • Kim, Hak-Chul;Choi, Il-Whan
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.4
    • /
    • pp.37-44
    • /
    • 2008
  • In this study we developed the analytical methods for the determination of three neurotoxin; anatoxin-a, saxitoxin and neosaxitoxin using HPLC/FLD system and this analytical methods were applied to real sample; algae culture and algae extracts. For the HPLC/FLD analysis of anatoxin-a samples were concentrated on WCX(Weak Cation Exchanger) SPE and then anatoxin-a in concentrate was derivatized with NBD-F solution. Supernatant was injected on HPLC system. For the HPLC/FLD analysis of saxitoxin and neosaxitoxin samples were separated on the column and then derivatizied by post column reactor for fluorescen detection. For post column reaction of saxitoxin we feed two kinds of reaction solution; Oxidizing Reagent of which composition was periodic acid(7mM) in 50mM potassium phosphate buffer, pH 9 and acidifying reagent of which Composition was 0.5M acetic acid. The LOD value for anatoxin-a, saxitoxin and neosaxitoxin in HPLC/FLD method was 24.3 ng. $35{\mu}g/L$, $27{\mu}g/L$ respectively. We determined the anatoxin-a content of lyophilized anabaena flos-aquae and $20{\mu}g/g$ d.w. of anatoxin-a was detected. We analyzed saxitoxin and neosaxitoxin in algae culture media and extracts of lypopyllized algal cell cultured and that of Deachung reservior. Saxitoxin and neosaxitoxin in real sample were below the limit of detection. Although there are various water treatment processes for removing neurotoxins were suggested no process give simultaneous and complete removal of neurotoxins. It was cocluded that nanofiltration which reject material by size can be a process for removal of neurotoxins.

Comparison of Nitrate and Fluoride Removals between Reverse-Osmosis, Nano-Flitration, Electro-Adsorption, Elecero-Coagulation in Small Water Treatment Plants (소규모 수도시설의 역삼투(RO), 나노여과(NF), 전기흡착(EA), 전기응집(EC) 공정의 질산성 질소 및 불소 이온 제거 성능 비교)

  • Han, Song-Hee;Chang, In-Soung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.2027-2036
    • /
    • 2013
  • Comparison of removal performance between reverse osmosis(RO), nanofiltration(NF), electrocoagulation(EC) and electroadsorption(EA) for removal of nitrate and fluoride often exceeded the limits of water quality in small water treatment plants. Removals of nitrate and fluoride were 72-92% and 74-85% in RO, 5-15% and 1% in NF, 99% and 44% in EA equipped with MWCNT coated electrodes, 82% and 77% in EA equipped with Cu-MWCNT electrodes, and 11-46% and 69-99% in EC. Consequently, high removals of both ions were anticipated in RO. Effective removal of both ions are possible for EC, but great production of sludge is a big burden. EA equipped with the MWCNT electrodes showed a great fluctuation in removal efficiency, and electrode stability should be upgraded.

Status of Membrane Filtration in Japan : Application for Water Supply

  • Minami, Katsuyoshi
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.55-62
    • /
    • 1997
  • In Japan, the membrane filtration is becoming a common technology for municipal water supply system especially for small plant. 6 years before (1991), the national research project of membrane filtration for small plant has started. The project was named as "MAC 21", MEMBRANE AQUA CENTURY 21. In the project the Ministry of Health and Welfare, 8 universities and 18 water treatment plant companies have been involved. This was the first attempt to research a common theme in joint with government, universities and private companies. After three years, the guide line for membrane filtration application for small plant has been established. This has promoted to install some actual plant. And also, another joint research for "RESEARCH OF MEMBRANE FILTRATION FOR ADVANCED WATER TREATMENT" has started in 1994 and completed in March, 1997. The project was named as MAC21. In the former project the main objectives were removal of turbidity and bacteria from water. However, in new project the objective was establishment of the further advanced membrane filtration technology which would be applicable for trace chemical components removal such as tri-halo-methane pre-courser, agricultural chemicals removal, offensive smell and taste removal and virus removal. For the objectives, application of nanofiltration and hybrid-system, a combination of micro-filtration ultra-filtration with biological, ozone and activated carbon treatment process have been studied. In addition, application of membrane filtration for treatment of back-wash waste water originated from membrane filters and conventional sand filters has.been studied. At the end of March of this year, about 30 membrane filtration plants are actually supplying the water, the total treatment capacity is about 6,000 m$^{3}$/day and another 20 will be installed within one year.led within one year.

  • PDF

Separation of Low Molecular Weight of Dye from Aqueous Solution Using the Prepared Nano-composite Hollow Fiber Membranes (중공사형 나노복합막 제조를 이용한 수용액으로부터 저분자량의 염료 분리 연구)

  • Park, Cheol Oh;Lee, Sung Jae;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.28 no.3
    • /
    • pp.180-186
    • /
    • 2018
  • The nano-composite membranes were prepared onto the polyvinylidene fluoride (PVDF) hollow fiber membranes through twice dip-coating known layer-by-layer method. For the first coating, poly(vinylsulfonic acid, sodium salt)(PVSA) and Poly(styrene sulfonic acid)(PSSA) were used with varying the concentration and ionic strength (IS) and the poly(ethyleneimine)(PEI) as the second coating material was fixed at 10,000 ppm and IS = 0.3. To characterize the prepared nano-composite membranes, the permeabilities and rejection ratio were measured for each 100 ppm NaCl, $CaSO_4$, $MgCl_2$, and 25 ppm MO aqueous solution. The rejections were increased as the concentrations of coating materials increased. And it was confirmed that the salt rejections for PSSA as the coating material were higher than for PVSA. Typically, the permeability, 1.848 LMH and the rejection for MO 76.3% were obtained at the coating conditions of PSSA 30,000 ppm and I.S = 1.0.

Reuse potential of spent RO membrane for NF and UF process

  • Ng, Zhi Chien;Chong, Chun Yew;Sunarya, Muhammad Hamdan;Lau, Woei Jye;Liang, Yong Yeow;Fong, See Yin;Ismail, Ahmad Fauzi
    • Membrane and Water Treatment
    • /
    • v.11 no.5
    • /
    • pp.323-331
    • /
    • 2020
  • With the increasing demand on reverse osmosis (RO) membranes for water purification worldwide, the number of disposed membrane elements is expected to increase accordingly. Thus, recycling and reuse of end-of-life RO membranes should be a global environmental action. In this work, we aim to reuse the spent RO membrane for nanofiltration (NF) and ultrafiltration (UF) process by subjecting the spent membrane to solvent and oxidizing solution treatment, respectively. Our results showed that solvent-treated RO membrane could perform as good as commercial NF membrane by achieving similar separation efficiencies, but with reduced water permeability due to membrane surface fouling. By degrading the polyamide layer of RO membrane, the transformed membrane could achieve high water permeability (85.6 L/㎡.h.bar) and excellent rejection against macromolecules (at least 87.4%), suggesting its reuse potential as UF membrane. More importantly, our findings showed that in-situ transformation on the spent RO membrane using solvent and oxidizing solution could be safely conducted as the properties of the entire spiral wound element did not show significant changes upon prolonged exposure of these two solutions. Our findings are important to open up new possibilities for the discarded RO membranes for reuse in NF and UF process, prolonging the lifespan of spent membranes and promoting the sustainability of the membrane process.

Evaluation of Treatment Efficiency using non-Control Indicator in Drinking Water Treatment Process (미규제 수질인자를 이용한 정수공정의 효율성 평가)

  • Lee Jae-Young;Kang Mee-A
    • The Journal of Engineering Geology
    • /
    • v.16 no.2 s.48
    • /
    • pp.153-159
    • /
    • 2006
  • The discharges of time, technology and finance was increased and it was difficult to use water resources effectively by serious water pollutions. Thus the main aim of this work was focused on effectiveness of water treatment process using non-controlled indicators such as UV absorbance($E_{260}$) and particle counts that provided analytical results with simple and rapid. The soluble aluminum was increased by the increase of aluminum doses for turbidity removals It means that the water quality was not controlled by only turbidity monitoring cause maximum turbidity removal did not guarantee minimum residual aluminum in an aluminum-based coagulation. E removal efficiency appeared to be the promising indicator for monitoring the effectiveness of the water quality process such as coagulation and nanofiltration membranes for arsenic(V). On the basis of the particle monitoring, it was also found that the particle counts could be used very useful for changing the coagulants in real water treatments.

Water quality analyses between tap water and treated water by point-of-use water dispenser systems (정수기 공급수인 수돗물과 정수기 통과수의 수질차이 분석)

  • Park, Keun-Young;Park, Ji-Won;Kim, Jae-Hyeok;Na, Yeong;Maeng, Sung-Kyu;Kim, Sung-Pyo;Kweon, Ji-Hyang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.5
    • /
    • pp.395-404
    • /
    • 2019
  • The point-of-use water dispenser systems are widely used because of convenience in handling and demand for high-quality drinking water. The application has been increased recently in the public places such as department stores, universities and the rest areas in express ways. Improvement of water qualities by the dispenser systems was compared with tap water in this study. The tap water is supplied to the dispenser as the influent of the dispenser system. The twelve dispensers in the public places were used. The five dispensers used reverse osmosis as the main filter and other dispensers used various filters such as ultrafiltration, nanofiltration, and alumina filter. The water quality indicators for sanitation safety, i.e., turbidity and total coliforms, were evaluated. Other water qualities such as pH, residual chlorine, heterotrophic plate count (HPC), and total cell counts were also analyzed. By the point-of-use water dispenser, the turbidity, residual chlorine and pH were decreased and the HPC and total cell counts were increased. The t-test results revealed that the HPC of the tap waters were not significantly different from the treated waters but the total cell counts of the two groups were significantly different. The low pH of the RO filter treatment was also significantly different from the tap waters. This study will contribute to understand the role of the point-of-use water dispenser in improving water quality and to identify key water quality for the proper maintenance of the dispenser systems.

Studies on Preparation and Performance of Poly(acrylonitrile) Nano-composite Hollow Fiber Membrane through the Coating of Hydrophilic Polymers (친수성 고분자의 코팅을 통한 Poly(acrylonitrile) 나노복합중공사막의 제조 및 성능 연구)

  • Park, Cheol Oh;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.29 no.3
    • /
    • pp.140-146
    • /
    • 2019
  • In this study, a selective layer of poly styrene sulfonic acid (PSSA) and polyethyleneimine (PEI) was formed by layer-by-layer method onto a porous polyacrylonitrile (PAN) hollow fiber membrane as the suppoter membrane. The salting out method was used by adding Mg salt to the coating solution. Several experimental conditions of the ionic strength, polymer concentration, and coating time were investigated, and the flux and rejection were measured at the operating pressure of 2 atm for 100 mg/L of NaCl, $MgCl_2$, and $CaSO_4$ as the feed solution. The membranes coated with PSSA 20,000 ppm, coating time 3 minutes, ionic strength 1.0, PEI 30,000 ppm, coating time 1 minute, and ionic strength 0.1 were observed the best. In the 100 ppm NaCl, $MgCl_2$, and $CaSO_4$ feed solutions, the flux of 20.4, 19.4, and 18.7 LMH, and the rejection of 67, 90, and 66.6%, respectively.