• Title/Summary/Keyword: Nanodevices

Search Result 56, Processing Time 0.025 seconds

Digital Gray-Scale/Color Image-Segmentation Architecture for Cell-Network-Based Real-Time Applications

  • Koide, Tetsushi;Morimoto, Takashi;Harada, Youmei;Mattausch, Jurgen Hans
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.670-673
    • /
    • 2002
  • This paper proposes a digital algorithm for gray-scale/color image segmentation of real-time video signals and a cell-network-based implementation architecture in state-of-the-art CMOS technology. Through extrapolation of design and simulation results we predict that about 300$\times$300 pixels can be integrated on a chip at 100nm CMOS technology, realizing very high-speed segmentation at about 1600sec per color image. Consequently real-time color-video segmentation will become possible in near future.

  • PDF

Body action impacts the stability of nanomedicine tools in the drug delivery

  • Peng Zou;Wei Zhao;Jinpeng Dong;Yinyin Cao
    • Advances in nano research
    • /
    • v.14 no.3
    • /
    • pp.247-259
    • /
    • 2023
  • Muscle strength and hypertrophy are equivalent when low-intensity resistance exercise is paired with blood flow restriction. This paper deals with the impact of physical exercise in the form of body activities on drug delivery using nanodevices. The body's actions impact the blood flow since the nano drug delivery devices are released into the bloodstream, and physical exercise and all the activities that change the blood flow influence the stability of these nanodevices. The nanodevice for the drug delivery purpose is modeled via nonuniform tube structures based on the high-order beam theory along with the nonlocal strain gradient theory. The nanodevice is made by a central nanomotor as well as two nanoblade in the form of truncated conical nanotubes carrying the nanomedicine. The mathematical simulation of rotating nanodevices is numerically solved, and the effect of various parameters on the stability of nanodevices has been studied in detail after the validation study.

A new theoretical model for the dynamical analysis of Nano-Bio-Structures

  • Di Sia, Paolo
    • Advances in nano research
    • /
    • v.1 no.1
    • /
    • pp.29-34
    • /
    • 2013
  • The conversion of mechanical energy into electrical energy at nanoscale using piezoelectric nanowire arrays has been in detail shown by deflection of nanowires. Recently it has performed an analytical model, both at classical and at quantum level, for describing the most important quantities concerning transport phenomena; the model predicts interesting peculiarities, as high initial charge diffusion in nanodevices constituting by nanowires and permits also in particular to deduce interesting informations about the devices sensitivity, focusing on the correlation between sensitivity and high initial diffusivity of these materials at nanometric level.

One-Dimensional Heterostructures Based Nanodevices

  • Myung, Nosang V.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.3.1-3.1
    • /
    • 2009
  • Nanotechnology has beenrapidly evolved from passive nanostructures where nanostructures with steadystructures and functions often used as parts of a product to activenanostructures which change their properties during use. Startingaround 2010, it is anticipated that researchers will cultivate expertise withsystems of nanostructures, directing large numbers of intricate components tospecified needs. One dimensional (1-D) nanostructures suchas nanowires and nanotubes are extremely attractive building blocks for nextgeneration devices because of their high surface to volume ratio and uniquesize dependent properties. In addition, their extremely high aspectratio offers researchers the potentials to build axial or radialheterostructures to integrate multiple functionality from intrinsic propertiesof the material or through interfacial phenomena. Spatialmanipulation and the ability to assemble and position nanostuructures in acontrolled matter so they are registered to define spaces is also a criticalstep toward scalable integration in high density nanodevices. In thispresentation, a generalized template directed electrodeposition with ancillaryassembly, contact will be presented to synthesize axial and radialheterostructures in cost-effective matter and these individual nanostructureswill be applied to spintronics, gas and biological sensors and thermoelectrics.

  • PDF