• 제목/요약/키워드: Nanocrystalline silicone

검색결과 2건 처리시간 0.016초

Detection of Nitroaromatic Compounds with Functionalized Porous Silicon Using Quenching Photoluminescence

  • 조성동
    • 통합자연과학논문집
    • /
    • 제3권4호
    • /
    • pp.202-205
    • /
    • 2010
  • Nanocrystalline porous silicon surfaces have been used to detect nitroaromatic compounds in vapor phase. The mode of photoluminescence is emphasized as a sensing attitude or detection technique. Quenching of photoluminescence from nanocrystalline porous surfaces as a transduction mode is measured upon the exposure of nitroaromatic compounds. Reversible detection mode for nitroaromatics is, too, observed. To verify the detection afore-mentioned, photoluminescent freshly prepared porous silicons are functionalized with different groups. The mechanism of quenching of photoluminescence is attributed to the electron transfer behaviors of quantum-sized nano-crystallites in the porous silicon matrix to the analytes(nitroaromatics). An attempt has been done to prove that the surface-derivatized photoluminescent porous silicone surfaces can act as versatile substrates for sensing behaviors due to having a large surface area and highly sensitive transduction mode.

Investigations on Microcrystalline Silicon Films for Solar Cell Application

  • Hwang, Hae-Sook;Park, Min-Gyu;Ruh, Hyun;Yu, Hyun-Ung
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권10호
    • /
    • pp.2909-2912
    • /
    • 2010
  • Hydrogenated microcrystalline silicon (${\mu}c$-Si:H) thin film for solar cells is prepared by plasma-enhanced chemical vapor deposition and physical properties of the ${\mu}c$-Si:H p-layer has been investigated. With respect to stable efficiency, this film is expected to surpass the performance of conventional amorphous silicon based solar cells and very soon be a close competitor to other thin film photovoltaic materials. Silicon in various structural forms has a direct effect on the efficiency of solar cell devices with different electron mobility and photon conversion. A Raman microscope is adopted to study the degree of crystallinity of Si film by analyzing the integrated intensity peaks at 480, 510 and $520\;cm^{-1}$, which corresponds to the amorphous phase (a-Si:H), microcrystalline (${\mu}c$-Si:H) and large crystals (c-Si), respectively. The crystal volume fraction is calculated from the ratio of the crystalline and the amorphous phase. The results are compared with high-resolution transmission electron microscopy (HR-TEM) for the determination of crystallinity factor. Optical properties such as refractive index, extinction coefficient, and band gap are studied with reflectance spectra.