• Title/Summary/Keyword: Nanocatalyst

Search Result 48, Processing Time 0.02 seconds

Review : Present Status of Green Chemistry (녹색화학 기술동향)

  • Lee, Jun-Wung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.246-263
    • /
    • 2011
  • Mankind has just begun to recognize that the most crucial factor to achieve the sustainable society in the future is green technology. Most countries support the development of green technology to prevent catastrophes from global warming, mainly in the areas of reducing carbon dioxide from the atmosphere. However, most products we consume in everyday life are produced through chemical processes, and we often oversee the fact that the huge amount of waste and energy during these chemical processes will seriously influence our goal to achieve our future society sustainable. Thus the technologies to minimize the amount of disposed waste and energy consumption during chemical processes may be more important than to reduce the greenhouse gases. In this regard this review introduces the recent status of green chemistry and future prospects in order to help our chemists and engineers establish research projects based on the green chemistry principles.

Synthesis, Structural Characterization, and Catalytic Activity of Flower Like ZnO Nanostructures

  • Ramachandran, K.;Kumar, G. Gnana;Kim, Ae Rhan;Yoo, Dong Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1091-1097
    • /
    • 2014
  • Tageteserecta flower like zinc oxide nanostructures composed of hexagonal nanorods were synthesized via sonochemical method at room temperature. The synthesized nanomaterials exhibited wurtzite hexagonal phase structure with the single crystalline nature. The diameter of the individual nanorods that constitute the flower shaped zinc oxide structures is in the range of 120-160 nm. The sonication time effectively determined the morphological properties of the prepared materials. The catalytic activity of prepared zinc oxide nanostructures towards N-formylation reactions were evaluated without any surface modification and the nanostructures exhibited good reaction yield with the prompt recyclability behavior.

First Principles Computational Design of High Functional Energy Materials (제일원리전산을 이용한 고성능 에너지소재설계)

  • Han, Byungchan;Noh, Seung Hyo;Seo, Joon Kyo;Kwon, In-Hye;Seo, Min Ho
    • Prospectives of Industrial Chemistry
    • /
    • v.15 no.3
    • /
    • pp.39-48
    • /
    • 2012
  • 현대 컴퓨터산업의 진보는 제일원리 전산법이 여러 연구개발 분야에 널리 사용되는 길을 열었다. 이 논문에서는 제일원리 전산법을 이용한 신 재생에너지의 고성능 나노 소재개발 및 디자인 연구사례를 통해 그 기초 원리와 다양한 응용분야 및 실험과의 효율적인 연계성 등을 소개하고자 한다.

Supported Metal Nanoparticles: Their Catalytic Applications to Selective Alcohol Oxidation (금속 나노 촉매를 활용한 선택적 알코올 산화 반응)

  • Hussain, Muhammad Asif;Joseph, Nyanzi;Kang, Onyu;Cho, Young-Hun;Um, Byung-Hun;Kim, Jung Won
    • Applied Chemistry for Engineering
    • /
    • v.27 no.3
    • /
    • pp.227-238
    • /
    • 2016
  • This review article highlights different types of nano-sized catalysts for the selective alcohol oxidation to form aldehydes (or ketones) with supported or immobilized metal nanoparticles. Metal nanoparticle catalysts are obtained through dispersing metal nanoparticles over a solid support with a large surface area. The nanocatalysts have wide technological applications to industrial and academic fields such as organic synthesis, fuel cells, biodiesel production, oil cracking, energy conversion and storage, medicine, water treatment, solid rocket propellants, chemicals and dyes. One of main reactions for the nanocatalyst is an aerobic oxidation of alcohols to produce important intermediates for various applications. The oxidation of alcohols by supported nanocatalysts including gold, palladium, ruthenium, and vanadium is very economical, green and environmentally benign reaction leading to decrease byproducts and reduce the cost of reagents as opposed to stoichiometric reactions. In addition, the room temperature alcohol oxidation using nanocatalysts is introduced.

Biguanide-Functionalized Fe3O4/SiO2 Magnetic Nanoparticles: An Efficient Heterogeneous Organosuperbase Catalyst for Various Organic Transformations in Aqueous Media

  • Alizadeh, Abdolhamid;Khodaei, Mohammad M.;Beygzadeh, Mojtaba;Kordestani, Davood;Feyzi, Mostafa
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2546-2552
    • /
    • 2012
  • A novel biguanide-functionalized $Fe_3O_4/SiO_2$ magnetite nanoparticle with a core-shell structure was developed for utilization as a heterogeneous organosuperbase in chemical transformations. The structural, surface, and magnetic characteristics of the nanosized catalyst were investigated by various techniques such as transmission electron microscopy (TEM), powder X-ray diffraction (XRD), vibrating sample magnetometry (VSM), elemental analyzer (EA), thermogravimetric analysis (TGA), $N_2$ adsorption-desorption (BET and BJH) and FT-IR. The biguanide-functionalized $Fe_3O_4/SiO_2$ nanoparticles showed a superpara-magnetic property with a saturation magnetization value of 46.7 emu/g, indicating great potential for application in magnetically separation technologies. In application point of view, the prepared catalyst was found to act as an efficient recoverable nanocatalyst in nitroaldol and domino Knoevenagel condensation/Michael addition/cyclization reactions in aqueous media under mild condition. Additionally, the catalyst was reused six times without significant degradation in catalytic activity and performance.

Synthesis of Core@shell Structured CuFeS2@TiO2 Magnetic Nanomaterial and Its Application for Hydrogen Production by Methanol Aqueous Solution Photosplitting

  • Kang, Sora;Kwak, Byeong Sub;Park, Minkyu;Jeong, Kyung Mi;Park, Sun-Min;Kang, Misook
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2813-2817
    • /
    • 2014
  • A new magnetic semiconductor material was synthesized to enable separation after a liquid-type photocatalysis process. Core@shell-structured $CuFeS_2@TiO_2$ magnetic nanoparticles were prepared by a combination of solvothermal and wet-impregnation methods for photocatalysis applications. The materials obtained were characterized using X-ray diffraction, transmission electron microscopy, ultraviolet-visible, photoluminescence spectroscopy, Brunauer-Emmett-Teller surface area measurements, and cyclic voltammetry. This study confirmed that the light absorption of $CuFeS_2$ was shifted significantly to the visible wavelength compared to pure $TiO_2$. Moreover, the resulting hydrogen production from the photo-splitting methanol/water solution after 10 hours was more than 4 times on the core@shell structured $CuFeS_2@TiO_2$ nanocatalyst than on either pure $TiO_2$ or $CuFeS_2$.

One Pot Four-Component Synthesis of Novel Substituted 2-Phenyl-4(3H) Quinazolinones Using Recyclable Nanocrystalline CuMnO3 Catalyst

  • Borhade, A.V.;Tope, D.R.;Gare, G D.;Dabhade, G.B.
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.4
    • /
    • pp.157-162
    • /
    • 2017
  • In the present study, nanocrystalline mixed metal oxide, $CuMnO_3$ catalyst have been synthesized by mechanochemical method with green chemistry approach. The synthesized catalyst was characterized by analytical techniques including FTIR, XRD, SEM, TEM and BET surface area. The synthesized catalyst shows high surface area is $121.06m^2/g$ with particle size 18 nm. The one pot four component synthesis of substituted 2-phenyl-4(3H) quinazolinone from the reaction of anthranilic acid, benzoyl chloride, hydrazine hydrate and substituted benzaldehyde in presence of $CuMnO_3$ nanocatalyst has been carried out. It affords the corresponding products with high yield (76-95%) in very short reaction time. All the obtained products were characterized with $^1HNMR$, $^{13}CNMR$, FTIR and EIMS.

Prediction of Atomic Configuration in Binary Nanoparticles by Genetic Algorithm (유전알고리즘을 이용한 이원계 나노입자의 원자배열 예측)

  • Oh, Jung-Soo;Ryou, Won-Ryong;Lee, Seung-Cheol;Choi, Jung-Hae
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.493-498
    • /
    • 2011
  • Optimal atomic configurations in a nanoparticle were predicted by genetic algorithm. A truncated octahedron with a fixed composition of 1 : 1 was investigated as a model system. A Python code for genetic algorithm linked with a molecular dynamics method was developed. Various operators were implemented to accelerate the optimization of atomic configuration for a given composition and a given morphology of a nanoparticle. The combination of random mix as a crossover operator and total_inversion as a mutation operator showed the most stable structure within the shortest calculation time. Pt-Ag core-shell structure was predicted as the most stable structure for a nanoparticle of approximately 4 nm in diameter. The calculation results in this study led to successful prediction of the atomic configuration of nanoparticle, the size of which is comparable to that of practical nanoparticls for the application to the nanocatalyst.

Nanopatterning of Self-assembled Transition Metal Nanostructures on Oxide Support for Nanocatalysts

  • Van, Trong Nghia;Park, Jeong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.211-211
    • /
    • 2011
  • Nanostructures, with a diversity of shapes, built on substrates have been developed within many research areas. Lithography is one powerful, but complex, technique to make structures at the nanometer scale, such as platinum nanowires for studying CO catalytic reactions [1], or aluminum nanodisks for studying the plasmon effect [2]. In this work, we approach a facile method to construct nanostructures using noble metals on a titania thin film by using self-assembled structures as a pattern. Here, a large-scale silica monolayer is transferred to the titania thin film substrates using a Langmuir-Blodgett trough, followed by the deposition of a thin transition metal layer. Owing to the hexagonal close-packed structure of the silica monolayer, we would obtain a metal nanostructure that includes separated metallic triangles (islands) after removing the patterning silica beads. This nanostructure can be employed to investigate the role of metal-oxide interfaces in CO catalytic reactions by changing the patterning silica particles with different sizes or by replacing the oxide support. The morphology and chemical composition of the structure can be characterized by scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy. In addition, we modify these islands to a connected island structure by reducing the silica size of the patterning monolayer, which is utilized to generating hot electron flow based on the localized surface plasmon resonance effect of the metal nanostructures.

  • PDF

Facile Preparation of ZnO Nanocatalysts for Ozonation of Phenol and Effects of Calcination Temperatures

  • Dong, Yuming;Zhao, Hui;Wang, Zhiliang;Wang, Guangli;He, Aizhen;Jiang, Pingping
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.215-220
    • /
    • 2012
  • ZnO nanoparticles were synthesized through a facile route and were used as ozonation catalysts. With the increase of calcination temperature ($150-300^{\circ}C$), surface hydroxyl groups and catalytic efficiency of asobtained ZnO decreased remarkably, and the ZnO obtained at $150^{\circ}C$ showed the best catalytic activity. Compared with ozonation alone, the degradation efficiency of phenol increased above 50% due to the catalysis of ZnO-150. In the reaction temperatures range from $5^{\circ}C$ to $35^{\circ}C$, ZnO nanocatalyst revealed remarkable catalytic properties, and the catalytic effect of ZnO was better at lower temperature. Through the effect of tertbutanol on degradation of phenol and the catalytic properties of ZnO on degradation of nitrobenzene, it was proposed that the degradation of phenol was ascribed to the direct oxidation by ozone molecules based on solidliquid interface reaction.