• 제목/요약/키워드: Nanoantennas

검색결과 3건 처리시간 0.017초

Scattering characteristics of metal and dielectric optical nano-antennas

  • Ee, Ho-Seok;Lee, Eun-Khwang;Song, Jung-Hwan;Kim, Jinhyung;Seo, Min-Kyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.76.1-76.1
    • /
    • 2015
  • Optical resonances of metallic or dielectric nanoantennas enable to effectively convert free-propagating electromagnetic waves to localized electromagnetic fields and vice versa. Plasmonic resonances of metal nanoantennas extremely modify the local density of optical states beyond the optical diffraction limit and thus facilitate highly-efficient light-emitting, nonlinear signal conversion, photovoltaics, and optical trapping. The leaky-mode resonances, or termed Mie resonances, allow dielectric nanoantennas to have a compact size even less than the wavelength scale. The dielectric nanoantennas exhibiting low optical losses and supporting both electric and magnetic resonances provide an alternative to their metallic counterparts. To extend the utility of metal and dielectric nanoantennas in further applications, e.g. metasurfaces and metamaterials, it is required to understand and engineer their scattering characteristics. At first, we characterize resonant plasmonic antenna radiations of a single-crystalline Ag nanowire over a wide spectral range from visible to near infrared regions. Dark-field optical microscope and direct far-field scanning measurements successfully identify the FP resonances and mode matching conditions of the antenna radiation, and reveal the mutual relation between the SPP dispersion and the far-field antenna radiation. Secondly, we perform a systematical study on resonant scattering properties of high-refractive-index dielectric nanoantennas. In this research, we examined Si nanoblock and electron-beam induced deposition (EBID) carbonaceous nanorod structures. Scattering spectra of the transverse-electric (TE) and transverse-magnetic (TM) leaky-mode resonances are measured by dark-field microscope spectroscopy. The leaky-mode resonances result a large scattering cross section approaching the theoretical single-channel scattering limit, and their wide tuning ranges enable vivid structural color generation over the full visible spectrum range from blue to green, yellow, and red. In particular, the lowest-order TM01 mode overcomes the diffraction limit. The finite-difference time-domain method and modal dispersion model successfully reproduce the experimental results.

  • PDF

Effective Coupling of a Topological Corner-state Nanocavity to Various Plasmon Nanoantennas

  • Ma, Na;Jiang, Ping;Zeng, You Tao;Qiao, Xiao Zhen;Xu, Xian Feng
    • Current Optics and Photonics
    • /
    • 제6권5호
    • /
    • pp.497-505
    • /
    • 2022
  • Topological photonic nanocavities are considered to possess outstanding optical performance, and provide new platforms for realizing strong interaction between light and matter, due to their robustness to impurities and defects. Here hybrid plasmonic topological photonic nanocavities are proposed, by embedding various plasmon nanoantennas such as gold nanospheres, cylinders, and rectangles in a topological photonic crystal corner-state nanocavity. The maximum quality factor Q and minimum effective mode volume Veff of these hybrid nanocavities can reach the order of 104 and 10-4 (𝜆/n)3 respectively, and the high figures of merit Q/Veff for all of these hybrid nanocavites are stable and on the order of 105 (𝜆/n)-3. The relative positions of the plasmon nanoantennas will influence the coupling strength between the plasmon structures and the topological nanocavity. The hybrid nanocavity with gold nanospheres possesses much higher Q, but relatively large Veff. The presence of a gold rectangular structure can confine more electromagnetic energy within a smaller space, since its Veff is smallest, although Q is lowest among these structures. This work provides an outstanding platform for cavity quantum electrodynamics and has a wide range of applications in topological quantum light sources, such as single-photon sources and nanolasers.

Review of Metasurfaces with Extraordinary Flat Optic Functionalities

  • Hee-Dong Jeong;Hyuntai Kim;Seung-Yeol Lee
    • Current Optics and Photonics
    • /
    • 제8권1호
    • /
    • pp.16-29
    • /
    • 2024
  • This paper presents a comprehensive review of metasurface technology, focusing on its significant role in extraordinary flat optic functionalities. Traditional optical components, though optimized, are bulky and less congruent with modern integrated electromagnetic and photonic systems. Metasurfaces, recognized as the 2D counterparts of bulk metamaterials, offer solutions with their planar, ultra-thin, and lightweight structures. Their meta-atoms are adept at introducing abrupt shifts in optical properties, paving the way for high-precision light manipulation. By introducing the key design principles of these meta-atoms, such as the magnetic dipole and Pancharatnam-Berry phase, various applications in wavefront shaping and beam forming with simple amplitude/phase manipulation and advanced applications including retroreflectors, Janus metasurfaces, multiplexing of optical wavefronts, data encryption, and metasurfaces for quantum applications are reviewed.