• Title/Summary/Keyword: Nano-sized metal oxide

Search Result 27, Processing Time 0.033 seconds

Synthesis and Compaction of Al-based Nanopowders by Pulsed Discharge Method

  • Rhee, Chang-Kyu;Lee, Geun-Hee;Kim, Whung-Whoe
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.433-440
    • /
    • 2002
  • Synthesis and compaction of Al-base nano powders by pulsed discharge method were investigated. The aluminum based powders with 50 to 200 nm of diameter were produced by pulsed wire evaporation method. The powders were covered with very thin oxide layer. The perspective process for the compaction and sintering of nanostructured metal-based materials stable in a wide temperature range can be seen in the densification of nano-sized metal powders with uniformly distributed hard ceramic particles. The promising approach lies in utilization of natural uniform mixtures of metal and ceramic phases, e.g. partially oxidized metal powders as fabricated in our synthesis method. Their particles consist of metal grains coated with oxide films. To construct a metal-matrix material from such powder, it is necessary to destroy the hard oxide coatings of particles during the compaction process. This goal was realized in our experiments with intensive magnetic pulsed compaction of aluminum nanopowders passivated in air.

Synthesis and Photocatalytic Properties of Thermally Stable Metal-Oxide Hybrid Nanocatalyst with Ultrathin Oxide Encapsulation

  • Naik, Brundabana;Moon, Song Yi;Kim, Sun Mi;Jung, Chan Ho;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.317.2-317.2
    • /
    • 2013
  • Ultrathin oxide encapsulated metal-oxide hybrid nanocatalysts have been fabricated by a soft chemical and facile route. First, SiO2 nanoparticles of 25~30 nm size have been synthesized by modified Stobber's method followed by amine functionalization. Metal nanoparticles (Ru, Rh, Pt) capped with polymer/citrate have been deposited on functionalized SiO2 and finally an ultrathin layer of TiO2 coated on surface which prevents sintering and provides high thermal stability while maximizing the metal-oxide interface for higher catalytic activity. TEM studies confirmed that 2.5 nm sized metal nanoparticles are well dispersed and distributed throughout the surface of 25 nm SiO2 nanoparticles with a 3-4 nm TiO2 ultrathin layer. The metal nanoparticles are still well exposed to outer surface, being enabled for surface characterization and catalytic activity. Even after calcination at $600^{\circ}C$, the structure and morphology of hybrid nanocatalysts remain intact confirm the high thermal stability. XPS spectra of hybrid nanocatalyst suggest the metallic states as well as their corresponding oxide states. The catalytic activity has been evaluated for high temperature CO oxidation reaction as well as photocatalytic H2 generation under solar simulation. The design of hybrid structure, high thermal stability, and better exposure of metal active sites are the key parameters for the high catalytic activity. The maximization of metal-TiO2 interface interaction has the great role in photocatalytic H2 production.

  • PDF

Highly Sensitive MEMS-Type Micro Sensor for Hydrogen Gas Detection by Modifying the Surface Morphology of Pd Catalytic Metal (Pd 촉매금속의 표면형상 변형에 의한 고감도 MEMS 형 마이크로 수소가스 센서 제조공정)

  • Kim, Jung-Sik;Kim, Bum-Joon
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.532-537
    • /
    • 2014
  • In this study, highly sensitive hydrogen micro gas sensors of the multi-layer and micro-heater type were designed and fabricated using the micro electro mechanical system (MEMS) process and palladium catalytic metal. The dimensions of the fabricated hydrogen gas sensor were about $5mm{\times}4mm$ and the sensing layer of palladium metal was deposited in the middle of the device. The sensing palladium films were modified to be nano-honeycomb and nano-hemisphere structures using an anodic aluminum oxide (AAO) template and nano-sized polystyrene beads, respectively. The sensitivities (Rs), which are the ratio of the relative resistance were significantly improved and reached levels of 0.783% and 1.045 % with 2,000 ppm H2 at $70^{\circ}C$ for nano-honeycomb and nano-hemisphere structured Pd films, respectively, on the other hand, the sensitivity was 0.638% for the plain Pd thin film. The improvement of sensitivities for the nano-honeycomb and nano-hemisphere structured Pd films with respect to the plain Pd-thin film was thought to be due to the nanoporous surface topographies of AAO and nano-sized polystyrene beads.

Size-dependent Toxicity of Metal Oxide Particles on the Soil Microbial Community and Growth of Zea Mays (산화 금속 입자 크기가 옥수수의 성장과 토양 미생물 군집에 미치는 독성)

  • Kim, Sung-Hyun;Jung, Mi-Ae;Lee, In-Sook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.12
    • /
    • pp.1069-1074
    • /
    • 2009
  • This study investigated soil microbial community and growth of Zea mays to compare the toxicity of nano and micro-sized Cu and Zn oxide particles in microcosm system. In the presence of nanoparticles, biomass of Zea mays reduced by 30% compared with micro-sized particles and inhibited growth. Dehydrogenase activity was inhibited by CuO nano although it was increased by ZnO nano particles. According to the Biolog test, the microbial diversity was decreased after exposed to CuO nanoparticles and ZnO microparticles. Therefore, though it is widely recognized that nanoparticles are more harmful than microparticles, we can conclude that the diversity of microbial community does not always influenced by the size of particles of nano and micro.

결함 제어를 통한 금속산화물 소재의 전기화학 특성 제어

  • Jeong, Hyeong-Mo;Sin, Won-Ho
    • Ceramist
    • /
    • v.21 no.2
    • /
    • pp.49-58
    • /
    • 2018
  • Metal oxide based materials have been widely used to fields of electrochemical applications. Recently, various type of defects from microstructures of metal oxides and their nanocomposites have been raised as the important material design factors for realizing highly improved electrochemical properties. Previous experimental and theoretical works have suggested that controlling the reaction activity and kinetics of the key electrochemical reactions by activated interfaces originating from the defect sites can play an important role in achieving the robust energy storage and conversion. Therefore, this paper focuses on the role of defect-controlled metal oxide materials such as doping, edge-sites, grain boundaries and nano-sized pores for the high performances in energy storage devices and electrocatalysts. The research approaches demonstrated here could offer a possible route to obtain noble ideas for designing the metal oxide materials for the energy storage and conversion applications.

A study on the synthesis and characterization of nano-sized metal oxide for conservation treatment of paper records (종이기록물 보존처리를 위한 나노크기의 금속산화물 합성 및 특성 고찰 연구)

  • Do, Young-Woong;Ha, Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1222-1227
    • /
    • 2014
  • Recording materials are the valuable historical and cultural parts themselves as well as the methods for exchanging informations. Therefore, the appropriate conservation treatments should be conducted to the recording materials respectively. In case of the paper records, some particular conservation treatments such as a deacidification and a sterilization are necessary to prevent both bio and chemical deteriorations. In this research, the nano-scaled ZnO and MgO with 10~30nm size were prepared for the effective and stable conservation treatment of the paper records. Deacidification and sterilization effect of nano compounds were excellent and since nano compounds had almost 100% purity(free from Pb, Cd, As), the additional damages caused by the heavy and toxic metals should not be occur to the books and papers.

Fabrication and Characterization of Nano-sized Fe-50 wt% Co Powder from Fe- and Co-nitrate (Fe- 및 Co-질산염을 이용한 Fe-50 wt% Co 나노분말의 합성 및 특성 평가)

  • Riu, Doh-Hyung;Oh, Sung-Tag
    • Korean Journal of Materials Research
    • /
    • v.20 no.10
    • /
    • pp.508-512
    • /
    • 2010
  • The optimum route to fabricate nano-sized Fe-50 wt% Co and hydrogen-reduction behavior of calcined Fe-/Conitrate was investigated. The powder mixture of metal oxides was prepared by solution mixing and calcination of Fe-/Co-nitrate. A DTA-TG and microstructural analysis revealed that the nitrates mixture by the calcination at $300^{\circ}C$ for 2 h was changed to Fe-oxide/$Co_3O_4$ composite powders with an average particle size of 100 nm. The reduction behavior of the calcined powders was analyzed by DTA-TG in a hydrogen atmosphere. The composite powders of Fe-oxide and Co3O4 changed to a Fe-Co phase with an average particle size of 40 nm in the temperature range of $260-420^{\circ}C$. In the TG analysis, a two-step reduction process relating to the presence of Fe3O4 and a CoO phase as the intermediate phase was observed. The hydrogen-reduction kinetics of the Fe-oxide/Co3O4 composite powders was evaluated by the amount of peak shift with heating rates in TG. The activation energies for the reduction, estimated by the slope of the Kissinger plot, were 96 kJ/mol in the peak temperature range of $231-297^{\circ}C$ and 83 kJ/mol of $290-390^{\circ}C$, respectively. The reported activation energy of 70.4-94.4 kJ/mol for the reduction of Fe- and Co-oxides is in reasonable agreement with the measured value in this study.

Twenty-Eight-Day Repeated Inhalation Toxicity Study of Nano-Sized Neodymium Oxide in Male Sprague-Dawley Rats

  • Kim, Yong-Soon;Lim, Cheol-Hong;Shin, Seo-Ho;Kim, Jong-Choon
    • Toxicological Research
    • /
    • v.33 no.3
    • /
    • pp.239-253
    • /
    • 2017
  • Neodymium is a future-oriented material due to its unique properties, and its use is increasing in various industrial fields worldwide. However, the toxicity caused by repeated exposure to this metal has not been studied in detail thus far. The present study was carried out to investigate the potential inhalation toxicity of nano-sized neodymium oxide ($Nd_2O_3$) following a 28-day repeated inhalation exposure in male Sprague-Dawley rats. Male rats were exposed to nano-sized $Nd_2O_3-containing$ aerosols via a nose-only inhalation system at doses of $0mg/m^3$, $0.5mg/m^3$, $2.5mg/m^3$, and $10mg/m^3$ for 6 hr/day, 5 days/week over a 28-day period, followed by a 28-day recovery period. During the experimental period, clinical signs, body weight, hematologic parameters, serum biochemical parameters, necropsy findings, organ weight, and histopathological findings were examined; neodymium distribution in the major organs and blood, bronchoalveolar lavage fluid (BALF), and oxidative stress in lung tissues were analyzed. Most of the neodymium was found to be deposited in lung tissues, showing a dose-dependent relationship. Infiltration of inflammatory cells and pulmonary alveolar proteinosis (PAP) were the main observations of lung histopathology. Infiltration of inflammatory cells was observed in the $2.5mg/m^3$ and higher dose treatment groups. PAP was observed in all treatment groups accompanied by an increase in lung weight, but was observed to a lesser extent in the $0.5mg/m^3$ treatment group. In BALF analysis, total cell counts, including macrophages and neutrophils, lactate dehydrogenase, albumin, interleukin-6, and tumor necrosis factor-alpha, increased significantly in all treatment groups. After a 4-week recovery period, these changes were generally reversed in the $0.5mg/m^3$ group, but were exacerbated in the $10mg/m^3$ group. The lowest-observed-adverse-effect concentration of nano-sized $Nd_2O_3$ was determined to be $0.5mg/m^3$, and the target organ was determined to be the lung, under the present experimental conditions in male rats.

Preparation of Nano-Sized Tin Oxide Powder by Spray Pyrolysis Process (분무열분해(噴霧熱分解) 공정(工程)에 의한 주석(朱錫) 산화물(酸化物) 나노 분말(粉末) 제조(製造))

  • Yu, Jae-Keun;Cha, Kwang-Yong;Kim, Myung-Choun;Han, Joung-Su;Jang, Jae-Bum;Lee, Yong-Hwa;Kim, Dong-Hee
    • Resources Recycling
    • /
    • v.17 no.6
    • /
    • pp.79-88
    • /
    • 2008
  • This study is the previous stage for the mass production technology development of the nano-sized tin oxide powder by the recycling of the wasted tin metal, and nano-sized tin oxide powder with the average particle size below 50 nm is prepared from the tin chloride solution by the spray pyrolysis process. As the reaction temperature increases from 800 to 850, the average particle size of the generated powder increases from 20 to 30 nm. As the reaction temperature increases to 900, the droplet type is composed of the particles with the average size of the 30 nm. while the average size of the independent particles increases up to $80{\sim}100$ nm and the surface microstructure becomes more solid. Until $900^{\circ}C$, as the reaction temperature increases, the XRD peak intensity increases, while the specific surface area decreases. When the reaction temperature increases to 950, most of the powder appears with the independent type and the average particle size decrease down to 70 nm. The XRD peak intensity greatly decreases and the specific surface area increases almost twice.

Synthesis of TiO2 nanoparticles using Water-in-oil microemulsion method (유중수형(油中水型) 마이크로에멀젼법을 이용한 타이타니아 나노입자의 제조)

  • So Min Jin;Hyeon Jin;Seong Ju Kim;Yu Na Kim;Dae-Won Lee
    • Journal of Industrial Technology
    • /
    • v.43 no.1
    • /
    • pp.1-6
    • /
    • 2023
  • TiO2 is a versatile metal oxide material that is frequently used as a photo-catalyst for organic pollutant oxidation and a functional material for ultraviolet-ray protection. To improve its chemical/physical properties and widen the range of industrial application, it is demanded to control the crystalline feature and morphology precisely by applying advanced nano-synthesis methods. In this study, we prepared TiO2 nanoparticles using the water-in-oil (W/O) microemulsion method and compared them with the particles synthesized by the conventional precipitation method. Also, we tried to find the optimum conditions for obtaining nano-sized, anatase-rich TiO2 particles by the W/O microemulsion method. We analyzed the crystalline feature and particle size of the prepared samples using X-ray diffraction (XRD) and Transmission electron microscopy (TEM). In summary, we found the W/O microemulsion is more effective than precipitation in obtaining nano-sized TiO2. The best result was derived when the microemulsion was formed using AOT surfactant, hydrolysis was performed under basic condition and the sample was calcined at 200℃.