• Title/Summary/Keyword: Nano-fluid

Search Result 216, Processing Time 0.024 seconds

Comparison of Antimicrobial and Antioxidant Activities by Different Extraction Methods in Korean Bamboos (한국산 대나무의 추출방법에 따른 항균 및 항산화 특성)

  • Choi, Hwan-Seok;Kim, Gwui-Cheol;Shin, Hyun-Jae
    • KSBB Journal
    • /
    • v.27 no.2
    • /
    • pp.131-135
    • /
    • 2012
  • To develop potential cosmetic ingredients with antimicrobial and antioxidant activities of 4 Korean bamboo species (P. bambusoides, P. nigra var. henonis, P. pubescens and Sasa coreana) using three different extraction methods-water, ethanol and supercritical fluid extraction. Antimicrobial activities and DPPH assay have been examined. Among the antimicrobial activities against two test strains, Escherichia coli and Staphylococcus aureus, ethanol extracts of 3 bamboo trees, P. bambusoides, P. nigra var. henonis, and P. pubescens, showed stronger than those of supercritical extracts. However, 4 bamboo supercritical extracts showed dose-dependent increase in antioxidant activity by DPPH assay. These results suggest that water fraction of bamboo extracts may be useful for the cosmetic ingredient with low cytotoxicity.

Statistical Characterization Fabricated Charge-up Damage Sensor

  • Samukawa Seiji;Hong, Sang-Jeen
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.3
    • /
    • pp.87-90
    • /
    • 2005
  • $SiO_2$ via-hole etching with a high aspect ratio is a key process in fabricating ULSI devices; however, accumulated charge during plasma etching can cause etching stop, micro-loading effects, and charge build-up damage. To alleviate this concern, charge-up damage sensor was fabricated for the ultimate goal of real-time monitoring of accumulated charge. As an effort to reach the ultimate goal, fabricated sensor was used for electrical potential measurements of via holes between two poly-Si electrodes and roughly characterized under various plasma conditions using statistical design of experiment (DOE). The successful identification of potential difference under various plasma conditions not only supports the evidence of potential charge-up damage, but also leads the direction of future study.

Cooling Performance of a Microchannel Heat Sink with Nanofluids (나노유체를 냉각유체로 사용하는 마이크로채널 히트 싱크의 냉각효율)

  • Jang, Seok-Pil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.849-854
    • /
    • 2005
  • In this paper, the cooling performance of a microchannel heat sink with nano-particle-fluid suspensions ('nanofluids') is numerically investigated. By using theoretical models of thermal conductivity and viscosity of nanofluids that account for the fundamental role of Brownian motion respectively, we investigate the temperature contours and thermal resistance of a microchannel heat sink with nanofluids such as 6nm copper-in-water and 2nm diamond-in-water. The results show that a microchannel heat sink with nanofluids has high cooling performance compared with the cooling performance of that with water, the classical coolant. Nanofluids reduce both the thermal resistance and the temperature difference between the heated microchannel wall and the coolant.

Electronic Ink using the Electrophoretic High Mobility Particles

  • Kim, Chul-Am;Kang, Seung-Youl;Kim, Gi-Heon;Ahn, Seong-Deok;Oh, Ji-Young;Suh, Kyung-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.969-971
    • /
    • 2007
  • The black/white electronic ink containing high mobility white nano particles and the organic black pigment particles dispersed in dielectric fluid were prepared. A charge control agent affects the electrophoretic zeta potentials of white particle, which show the maximum value in zeta potential. The electronic ink panel fabricated with the charged white particles and the black particles exhibits more than 15:1 contrast ratio at 10V.

  • PDF

Second law thermodynamic analysis of nanofluid turbulent flow in heat exchanger

  • K. Manjunath
    • Advances in Energy Research
    • /
    • v.8 no.3
    • /
    • pp.125-136
    • /
    • 2022
  • Entropy generation along with exergetic analysis is carried out using turbulent nanofluid flow in the heat exchanger. To obtain the optimized percentage constituent of nanofluid, the nanofluid volume concentrations is varied for the given input conditions. For different Reynolds number of the fluid and heat capacity rate ratio between the streams, the heat transfer improvements are studied in terms of nano particles diameter. Parametric analysis is carried out for a counterflow heat exchanger using turbulent nanofluid flow with exergetic efficiency along with entropy generation number as performance parameters. The exergetic efficiency provides realistic approach in the design of nanofluid applications in heat exchanger leading to conservation of energy.

Thin CNTs nanoliquid film development over a rough rotating disk

  • Swatilekha Nag;Susanta Maity;Sanjeev K. Metya
    • Advances in nano research
    • /
    • v.15 no.2
    • /
    • pp.91-104
    • /
    • 2023
  • Development of thin carbon nanotubes (CNTs) nanoliquid film over the rough surface of a horizontal rotating disk is investigated by considering symmetric roughness either along the azimuthal or radial directions. The disk surface is either heated or cooled axisymmetrically from below. The effects of single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs) are analyzed on the film thinning process with different types of base liquids. Closed form solutions for velocity and temperature field are obtained for small values of Reynolds number whereas the numerical solution is derived for moderate values of Reynolds number. It is found that fluid retention / depletion takes place when the roughness is symmetric along the azimuthal / radial directions. It is also seen that the film thinning rate enhances for MWCNTs compare to SWCNTs. Further it is found that two different heat transfer regions exits within the flow domain depending on the fact that heat is transferred from disk to liquid film and vice-versa.

Continuous element method for aeroacoustics' waves in confined ducts

  • Khadimallah, Mohamed A.;Harbaoui, Imene;Casimir, Jean B.;Taieb, Lamjed H.;Hussain, Muzamal;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.13 no.4
    • /
    • pp.341-350
    • /
    • 2022
  • The continuous elements method, also known as the dynamic stiffness method, is effective for solving structural dynamics problems, especially over a large frequency range. Before applying this method to fluid-structure interactions, it is advisable to check its validity for pure acoustics, without considering the different coupling parameters. This paper describes a procedure for taking wave propagation into account in the formulation of a Dynamic Stiffness Matrix. The procedure is presented in the context of the harmonic response of acoustic pressure. This development was validated by comparing the harmonic response calculations performed using the continuous element model with the analytical solution. In addition, this paper illustrates the application of this method to a simple compressible flow problem, since it has been applied solely to structural problems to date.

In vitro evaluation of nano zinc oxide (nZnO) on mitigation of gaseous emissions

  • Sarker, Niloy Chandra;Keomanivong, Faithe;Borhan, Md.;Rahman, Shafiqur;Swanson, Kendall
    • Journal of Animal Science and Technology
    • /
    • v.60 no.11
    • /
    • pp.27.1-27.8
    • /
    • 2018
  • Background: Enteric methane ($CH_4$) accounts for about 70% of total $CH_4$ emissions from the ruminant animals. Researchers are exploring ways to mitigate enteric $CH_4$ emissions from ruminants. Recently, nano zinc oxide (nZnO) has shown potential in reducing $CH_4$ and hydrogen sulfide ($H_2S$) production from the liquid manure under anaerobic storage conditions. Four different levels of nZnO and two types of feed were mixed with rumen fluid to investigate the efficacy of nZnO in mitigating gaseous production. Methods: All experiments with four replicates were conducted in batches in 250 mL glass bottles paired with the ANKOM$^{RF}$ wireless gas production monitoring system. Gas production was monitored continuously for 72 h at a constant temperature of $39{\pm}1^{\circ}C$ in a water bath. Headspace gas samples were collected using gas-tight syringes from the Tedlar bags connected to the glass bottles and analyzed for greenhouse gases ($CH_4$ and carbon dioxide-$CO_2$) and $H_2S$ concentrations. $CH_4$ and $CO_2$ gas concentrations were analyzed using an SRI-8610 Gas Chromatograph and $H_2S$ concentrations were measured using a Jerome 631X meter. At the same time, substrate (i.e. mixed rumen fluid+ NP treatment+ feed composite) samples were collected from the glass bottles at the beginning and at the end of an experiment for bacterial counts, and volatile fatty acids (VFAs) analysis. Results: Compared to the control treatment the $H_2S$ and GHGs concentration reduction after 72 h of the tested nZnO levels varied between 4.89 to 53.65%. Additionally, 0.47 to 22.21% microbial population reduction was observed from the applied nZnO treatments. Application of nZnO at a rate of $1000{\mu}g\;g^{-1}$ have exhibited the highest amount of concentration reductions for all three gases and microbial population. Conclusion: Results suggest that both 500 and $1000{\mu}g\;g^{-1}$ nZnO application levels have the potential to reduce GHG and $H_2S$ concentrations.

Design of Turbulent In-situ Mixing Mixer and Fabrication of Cu-TiB2 Nanocomposities (난류 용탕 In-situ 합성 믹서의 설계 및 Cu-TiB2 나노 복합재료의 제조)

  • Choi, Baek-Boo;Park, Jung-Su;Yun, Ji-Hun;Ha, Man-Young;Park, Yong-Ho;Park, Ik-Min
    • Korean Journal of Materials Research
    • /
    • v.17 no.1
    • /
    • pp.11-17
    • /
    • 2007
  • Turbulent in-situ mixing process is a new material process technology to get dispersed phase in nanometer size by controlling reaction of liquid/solid, liquid/gas, flow ana solidification speed simultaneously. In this study, mixing which is the key technology to this synthesis method was studied by computational fluid dynamics. For the simulation of mixing of liquid metal, static mixers investigated. Two inlets for different liquid metal meet ana merge like 'Y' shape tube having various shapes and radios of curve. The performance of mixer was evaluated with quantitative analysis with coefficient of variance of mass fraction. Also, detailed plots of intersection were presented to understand effect of mixer shape on mixing. The simulations show that the Reynolds number (Re) is the important factor to mixing and dispersion of $TiB_2$ particles. Mixer was designed according to the simulation, and $Cu-TiB_2$ nano composites were evaluated. $TiB_2$ nano particles were uniformly dispersed when Re was 1000, and cluster formation and reduction in volume fraction of $TiB_2$ were found at higher Re.

Measurement and Modeling of Bubble Points for Binary Mixtures of Carbon Dioxide and N,N-Dimethylformamide (이산화탄소와 디메틸포름아마이드 혼합물의 기포점 측정 및 모델링)

  • Jung, Joon-Young;Lee, Byung-Chul
    • Clean Technology
    • /
    • v.17 no.1
    • /
    • pp.19-24
    • /
    • 2011
  • The bubble point pressures of binary mixtures of carbon dioxide ($CO_2$) and N,N-dimethylformamide (DMF) were measured by using a high-pressure experimental apparatus equipped with a variable-volume view cell, at various $CO_2$ compositions in the range of temperatures above the critical temperature of $CO_2$ and below the critical temperature of DMF. The experimental bubble point pressure data were correlated with the Peng-Robinson equation of state (PR-EOS) to estimate the corresponding dew point compositions at equilibrium with the bubble point compositions. The experimentally measured bubble point pressures gave good agreement with those calculated by the PR-EOS. The variable-volume view cell equipment was verified to be an easy and quick way to measure the bubble point pressures of high-pressure compressible fluid mixtures.