• Title/Summary/Keyword: Nano-composite materials

Search Result 586, Processing Time 0.028 seconds

Permittivities of the Carbon Nano Fiber/Epoxy Composite According to the Dispersion Methods (분산 방법에 따른 카본 나노 섬유/에폭시 복합재료의 유전율)

  • 김태욱;김진봉;공진우;정재한;김준현
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.55-58
    • /
    • 2003
  • This paper presents a study on the permittivities of the carbon nano fiber/epoxy composite at microwave frequency. The permittivities of composite materials depend on the concentrations and the dispersion methods of the carbon nano fibers. The experimental values of complex permittivities were obtained for the specimen made by dispersion method using ethyl alcohol as dispersion media and compared with the results by simple mechanical mixing method.

  • PDF

Synthesis of Amorphous Matrix Nano-composite in Al-Cu-Mg Alloy

  • Kim, Kang Cheol;Park, Sung Hyun;Na, Min Young;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • v.44 no.3
    • /
    • pp.105-109
    • /
    • 2014
  • The microstructure of as-quenched $Al_{70}Cu_{18}Mg_{12}$ alloy has been investigated in detail using transmission electron microscopy. Al nano-crystals about 5 nm with a high density are distributed in the amorphous matrix, indicating amorphous matrix nano-composite can be synthesized in Al-Cu-Mg alloy. The high density of Al nano-crystals indicates very high nucleation rate and sluggish growth rate during crystallization possibly due to limited diffusion rate of solute atoms of Cu and Mg during solute partitioning. The result of hardness measurement shows that the mechanical properties can be improved by designing a nano-composite structure where nanometer scale crystals are embedded in the amorphous matrix.

A study on the synthesis and characterization of PI/$\textrm{TiO}_2$ nano-composite (폴리이미드/$\textrm{TiO}_2$ 나노 복합재의 합성 및 특성에 관한 연구)

  • 이중희;이봉신;허석봉
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.137-140
    • /
    • 2001
  • Oragnic/inorganic hybrid materials prepared by sol-gel method have rapidly become a fasci nating research field in materials science. In this study, Polyimide/$\textrm{TiO}_2$ composites were synthesized from nano-sized anatase $\textrm{TiO}_2$ and two types of Polyimide (BTDA-PPD, PMDA-ODA) by Sol-gel method. Nano-sized $\textrm{TiO}_2$ particles were prepared from $\textrm{TiOEt}_4$ solution. The composites were charcaterized by using XRD, TGA, IR, TEM, and Atomic Force Microscope(AFM). $\textrm{TiO}_2$ nano particles were dispersed well in polyimide matrix and the thermal stability of polyimide was improved with $\textrm{TiO}_2$ nano-sized particles.

  • PDF

Effect of Ultrasound on the Mechanical Properties of Electrodeposited Ni-SiC Nano Composite

  • Gyawali, Gobinda;Cho, Sung-Hun;Woo, Dong-Jin;Lee, Soo-Wohn
    • Korean Journal of Materials Research
    • /
    • v.20 no.8
    • /
    • pp.439-443
    • /
    • 2010
  • Nano sized SiC particles (270 nm) are easily agglomerated in nickel sulfamate electrolytic bath during a composite electrodeposition process. The agglomeration of nano particles in composite coatings can significantly reduce the mechanical properties of the composite coatings. In this study, Ni-SiC nano composite coatings were fabricated using a conventional electrodeposition process with the aid of ultrasound. Nano particles were found to be distributed homogeneously with reduced agglomeration in the ultrasonicated samples. Substantial improvements in mechanical properties were observed in the composite coatings prepared in presence of ultrasound over those without ultrasound. Ni-SiC composite coatings were prepared with variable ultrasonic frequencies ranging from 24 kHz to 78 kHz and ultrasonic powers up to 300 watts. The ultrasonic frequency of 38 kHz with ultrasonic power of 200 watt was revealed to be the best ultrasonic conditions for homogeneous dispersion of nano SiC particles with improved mechanical properties in the composite coatings. The microstructures, phase compositions, and mechanical properties of the composite coatings were observed and evaluated using SEM, XRD, Vickers microhardness, and wear test. The Vickers microhardness of composite coatings under ultrasonic condition was significantly improved as compared to the coatings without ultrasound. The friction coefficient of the composite coating prepared with an ultrasonic condition was also smaller than the pure nickel coatings. A synergistic combination of superior wear resistance and improved microhardness was found in the Ni-SiC composite coatings prepared with ultrasonic conditions.

Electrical and Mechanical Properties of Cu/Carbon Nano-Particle Hybrids Composites by Cathodic Electrophoresis (음극 전기영동법에 의해 제조된 구리/탄소 나노입자 하이브리드 복합재료의 전기적/기계적 특성 평가)

  • Lee, Wonoh;Lee, Sang-Bok;Choi, Oyoung;Yi, Jin-Woo;Byun, Joon-Hyung
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.12
    • /
    • pp.1130-1135
    • /
    • 2010
  • Cu/carbon nano-particle hybrids were fabricated through the cathodic electrophoretic deposition (EPD) process. CNT and CNF nano-particles were modified to give positive charges by polyethyleneimine (PEI) treatment before depositing them on the substrate. Since a Cu plate was used as an anode in the EPD process, Cu particles were also deposited along with the carbon nano-particles. Experimental observation showed the nano-hybrids constructed a novel formicary-like nano-structure which is strong and highly conductive. Utilizing the hybrids, carbon fiber composites were manufactured, and their electrical conductivity and interlaminar shear strength were measured. In addition, the deposition morphology and failure surface were examined by SEM observations. Results demonstrated that the electrical conductivities in the through-the-thickness direction and the interlaminar shear strength significantly increased by 350~2100% and 14%, respectively.

Permeation Properties of Composite Thin Film for Organic Based Electronic Devices

  • Kim, Kwang-Ho;Kim, Hoon;Lee, Joo-Won;Kim, Jai-Kyeong;Ju, Byeong-Kwon;Jang, Jin;Oh, Myung-Hwan;Han, Jeong-In
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.920-923
    • /
    • 2003
  • We fabricated composite materials as a pellet structure with the various kinds of inorganic material powder. The composite materials were deposited onto the plastic film by the electron beam evaporation and water vapor transmission rates (WVTRs) were measured by the MOCON facility. As a result of WVTRs, the composite materials had lower WVTR value than any other inorganic materials. So, these films were proposed to protect the organic light emitting device (OLED) from moisture and oxygen. We can consider that the composite thin-film is one of the more suitable candidates for the thin-film passivation layer in the OLED. And, we are processing the XRD, XPS and EPMA to analyze the property of the composite material. We will also analyze properties of the current-voltage and luminescence for lifetime both the composite thin-film passivated OLED and non-passivated OLED.

  • PDF

Effect of Ultrasound on the Mechanical Properties of Electrodeposited Ni-SiC Nano Composite

  • Gyawali, Gobinda;Lee, Su-Wan;U, Dong-Jin;Lee, Han-Yong;Jo, Seong-Hun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.26.1-26.1
    • /
    • 2010
  • Ni-SiC nano composite coatings were fabricated using electrodeposition technique with the aid of ultrasound. The properties of the nano composite were investigated by using SEM, XRD, Wear test and Vicker's microhardness test. The results demonstrated that the microhardness of composite coatings under ultrasonic condition was improved significantly as compared to conventional electrodeposition techniques without ultrasound. The nano particles were found to be distributed homogeneously with reduced agglomeration. The synergistic combination of superior wear resistance and improved microhardness was found in ultrasonicated conditions to the Ni-SiC nano composite coatings.

  • PDF

Enhanced Carbon Nanotube Dissolution for Electrically Conductive Films (전기전도성 필름제조를 위한 탄소나노튜브 용해도 향상)

  • Lee, Geon-Woong;Han, Dong-Hee;Park, Su-Dong;Kang, Dong-Pil;Kumar, Satish
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.65-66
    • /
    • 2006
  • Solubility of single wall carbon nanotubes (SWNTs) has been determined in various dispersing media by using the solvent parameters such as Kamlet-Taft parameter and 3-dimensional parameters. Nitric acid-treated SWNTs exhibit significantly improved solubility in hydrogen bondable solvents as well as in solvent mixtures. The forming bucky gel with ionic liquid allows for the new group of dissolving solvent. The dissolution behavior of SWNTs provides a route for SWNT dispersion/exfoliation in preparing electrically conductive films such as transparent electrode.

  • PDF

Electrical Properties of the Epoxy Nano-composites according to Additive

  • Shin, Jong-Yeol;Park, Hee-Doo;Choi, Kwang-Jin;Lee, Kang-Won;Lee, Jong-Yong;Hong, Jin-Woong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.3
    • /
    • pp.97-101
    • /
    • 2009
  • The use of a filler material in epoxy composite materials is an essential condition for reducing the unit cost of production and reinforcing mechanical strength. However, the dielectric strength of insulators decreases rapidly due to interactions between the epoxy resin and filler particles. In contrast to existing composite materials, nano-composite materials have superior dielectric strength, mechanical strength, and enduring chemical properties due to an increase in the bond strength of the polymer and nano material, It is reported that nano-fillers provide new characteristics different from the properties of the polymer material. This study is to improve the insulation capability of epoxy resins used in the insulation of a power transformer apparatus and many electronic devices mold. To accomplish this, the additional amount of nano-$SiO_2$ to epoxy resin was changed and the epoxy/$SiO_2$ nano composite materials were made, and the fundamental electrical properties were investigated using a physical properties and an analysis breakdown test. Using allowable breakdown probability, the optimum breakdown strength for designing an electrical apparatus was determined. The results found that the electrical characteristics of the nano-$SiO_2$ content specimens were superior to the virgin specimens. The 0.4 wt% specimens showed the highest electrical properties among the specimens examined with an allowable breakdown probability of 20 %, which indicates stable breakdown strength in insulating machinery design.

Excellent Seam Weldable Nano-Composite Coated Zn-Ni Plating Steels for Automotive Fuel Tank

  • Jo, Du-Hwan;Yun, Sang-Man;Park, Kee-Cheol;Kim, Myung-Soo;Kim, Jong-Sang
    • Corrosion Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.16-23
    • /
    • 2019
  • Steels for automotive fuel tank require unique properties such as corrosion resistance for fuel, welding for joining, forming for press, and painting for exterior. Recently, automakers have been requiring excellent seam weldable steels to enhance manufacturing productivity of fuel tank. Thus, POSCO developed a new type of functional steels coated with nano-composite thin layer on Zn-Ni plating steels. The nano-composite coating solution was prepared by mechanical fine dispersion of solutions consisting of polymeric resin and nano-composite materials in aqueous media. The composite solution was coated on the plating steel surface by using roll coater and cured through induction furnace. These new developed plating steels were evaluated for quality performances such as seam and spot weldability, press formability, and corrosion resistance. These new functional steels coated with nano-composite layer exhibited excellent seam weldability and press formability. Detailed discussion of coating solution and experimental results suggest that nano-sized composite dispersion as coating layer plays a key role in enhancing the quality performance.