• Title/Summary/Keyword: Nano structure

Search Result 1,969, Processing Time 0.041 seconds

AC Electrical and Mechanical Properties of Epoxy-Nano-Microsilica Mixed Composites for Eco-Friendly GIS Spacer (친환경 GIS Spacer용, 에폭시-나노-마이크로실리카 혼합 콤포지트의 교류 전기적, 기계적 특성)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.9
    • /
    • pp.1181-1188
    • /
    • 2018
  • In order to develop new insulating materials for GIS Spacer using environmentally friendly insulating gas, three kinds of dispersed liquid nano composites of solid epoxy /nano layered silicate filled material were prepared. And the epoxy/nano/micro silica composite was prepared by mixing epoxy/nano 3 phr dispersion/4 kinds of filler contents(40,50,60, 70wt%). The electrical insulation breakdown strengths of the nano and nano/micro mixed composites were evaluated by using 8 kinds of samples including the original epoxy. The mechanical tensile strength of the epoxy / nano / micro silica composite were evaluated, also. The TEM was measured to evaluate the internal structure of nano/micro composites. As a result, it was confirmed that the layered silicate nano particles was exfoliated through the process of inserting epoxy resin between silicate layers and the layers. In addition, dispersion of nano / micro silica resulted in improvement of electrical insulation breakdown strength with increase of filling amount of dense tissue with nanoparticles inserted between microparticles. In addition, the tensile strength showed a similar tendency, and as the content of microsilica filler increased, the mechanical improvement was further increased.

Direct Conversion Sintering of Super-hard Nano-polycrystalline Diamond from Graphite

  • Sumiya, Hitoshi;Irifune, Tetsuo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1309-1310
    • /
    • 2006
  • High-purity and super-hard nano-polycrystalline diamond has been successfully synthesized by direct conversion from high-purity graphite under static pressures above 15 GPa and temperatures above $2300^{\circ}C$. This paper describes research findings on the formation mechanism of nano-structure and on the contributing factor leading to high hardness.

  • PDF

A study on size variation of quadrangular pyramid structure according to input voltage of solenoid indentation system (솔레노이드 전압변화에 따른 사각뿔 구조체의 크기변화 경향 분석에 관한 연구)

  • Moon, Seung Hwan;Jeong, Ji-Young;Han, Jun-Se;Choi, Doo-Sun;Choi, Sung-Dae;Jeon, Eun-chae;Je, Tae-Jin
    • Design & Manufacturing
    • /
    • v.13 no.4
    • /
    • pp.40-44
    • /
    • 2019
  • The light diffusion component spreads the light from one point evenly over a large area. Various types of light diffusion parts such as films and lenses are applied in the high-tech industries such as LCD display devices, lighting devices, and solar energy generation. Among these, a diffuser sheet (Diffuser Sheet) has a function to uniformly distribute the light, and various studies have been conducted to improve its function. The shape of the conventional light diffusion pattern is mainly made of a dot or hemispherical shape. In this study, a rectangular cone-shaped structure having a light diffusion function and an advantage of controlling the angle of refraction of light was fabricated by using a solenoid indentation process. The change in shape of the indentation structure was analyzed.

Effects of Nano-sized Calcium Carbonate on Physical and Optical Properties of Paper (나노사이즈 탄산칼슘이 종이의 물리·광학적 특성에 미치는 영향)

  • Park, Jung-Yoon;Lee, Tai-Ju;Kim, Hyoung-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.4
    • /
    • pp.1-10
    • /
    • 2014
  • In papermaking industry, inorganic fillers are widely used for the purpose of improving opacity, brightness, printability, uniformity and dimensional stability. They are also useful for production costs and energy savings. In the past, inorganic fillers in papermaking industry only focused on micro-scale but recently, new trials on nano-powdered technology are applying. Even nano-powdered fillers are rapidly utilized for improving the optical and surface properties in coating and surface sizing, there still have some problems in wet-end process due to poor dispersibility and retention. In this study, nano-particled calcium carbonate was produced by milling the PCC and its applicability between micro sized and nano sized calcium carbonated was compared in wet-end process, and finally the sheet properties were evaluated. Nano-PCC was not retained in sheet structure without applying retention system, but with retention system nano-powdered PCC was absorbed on fiber surface with expanding the fiber networks. The application of PAM-bentonite system has resulted in high ash retention and bulky structure for copier paper, and good optical properties in brightness and opacity. However, it required to solve the weakness of low tensile property due to interruption of hydrogen bonding by nano fillers.

Time-dependent buckling analysis of SiO2 nanoparticles reinforced concrete columns exposed to fire

  • Bidgoli, M. Rabani;Saeidifar, M.
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.119-127
    • /
    • 2017
  • Time-dependent buckling of embedded straight concrete columns armed with Silicon dioxide($SiO_2$) nano-particles exposed to fire is investigated in the present study for the fire time. The column is simulated mathematically with Timoshenko beam model. The governing mass conservation equations to describe heat and moisture transport in concrete containing free water, water vapor, and dry air in conjunction with the conversion of energy are considered. The characteristics of the equivalent composite are determined using Mori-Tanaka approach. The foundation around the column is simulated with spring and shear layer. Employing nonlinear strains-displacements, energy methods and Hamilton's principal, the governing equations are derived. Differential quadrature method (DQM) is used in order to obtain the critical buckling load and critical buckling time of structure. The influences of volume percent of $SiO_2nano-particles$, geometrical parameters, elastic foundation and concrete porosity are investigated on the time-dependent buckling behaviours of structure. Numerical results indicate that reinforcing the concrete column with $SiO_2nano-particles$, the structure becomes stiffer and the critical buckling load and time increase.