• Title/Summary/Keyword: Nano stage

Search Result 280, Processing Time 0.025 seconds

A Study on System Identification of Nano-scale Stage Using Capacitive Sensor (정전용량 센서를 이용한 나노급 이송장치의 시스템 식별에 관한 연구)

  • Lee, Jea-Ho;Kim, Seung-Hyun;Jung, Joon-Hong;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2537-2539
    • /
    • 2005
  • In many cases the systems are so complex that it is not possible to obtain reasonable models using physical laws. Also a model based on physical laws contains a number of unknown parameters even if the structure is derived from physical laws. These problems can be solved by system identification. In this paper, a nano stage system is selected as an example for system identification. The transfer functions of this system is derived by using state-space model structure based on input/output data through experiment.

  • PDF

Real-time Measurement of Precision Displacement using Fiber Optic EFPI Sensor (광섬유 EFPI 센서를 이용한 실시간 고정밀 변위 측정)

  • 박상욱;김대현;김천곤;홍창선
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.154-157
    • /
    • 2003
  • Precision displacement of less than a few nm resolution was measured in real-time using fiber optic EFPI sensor. The novel method for real-time processing of analyzing EFPI output signal was developed and verified. Linearity in the mean values of interferometric light intensity among adjacent fringes was shown, and the sinusoidal approximation algorithm that estimates past and coming fringe values was verified through the linearity. Real-time signal processing program was developed, and the intensity signal of the EFPI sensor was transformed to the phase shift with this program. The resolution below 0.4 ~ 10 nm in the displacement range of $0 ~ 300\mu\textrm{m}$ was obtained by reducing the photodetector noise using low-pass filter and signal averaging. The nano-translation stage with a Piezo-electric actuator and the EFPI sensor system was designed and tested. This stage successfully reached to the desired destination in $15\mu\textrm{m}$ range within 1 nm accuracy.

  • PDF

Study of Dual Servo System for Measurement System of Mechanical Property (재료의 기계적 물성측정 시험장치를 위한 이중서보 시스템에 관한 연구)

  • 최현석;송치우;한창수;이형욱;최태훈;이낙규;나경환
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.2
    • /
    • pp.31-37
    • /
    • 2003
  • This paper presents a measurement system of mechanical property using dual servo system. There are many kinds of method to measure material properties such as tensile test, indention and bending test. It is highly required to measure the properties of nano-sized material and structure. However, It is need more accurate measurement system, more stable and frequency response than conventional test. In this paper, we designed the dual servo system for a measuring instrument The dual servo system consisting of a coarse stage and a fine motion stage with VCM and PZT is proposed. Mechanical mechanism is designed with the leaf spring type of flexure hinge joint. Lead compensator is applied to this control system, and is designed by PQ method.

  • PDF

Design of Robust Optimal Controller for Nano Stage using Sliding-mode Control (나노 스테이지에 대한 슬라이딩-모드 제어 기반의 강인 최적 제어기 설계)

  • Choi, In-Sung;Choi, Seung-Ok;You, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.101-103
    • /
    • 2007
  • In this paper. we design a robust optimal controller for ultra-precision positioning system. Generally, it is hard to control the nanometric scale positioning system because of the parameter uncertainties and external disturbances. To solve this problem. we suggest a control algorithm based on the modified sliding-mode control and the LQ control in an augmented system. The augmented system is composed of additional state variables: state estimates and control input in the nominal system. Through comparison with LQ optimal control, it is verified that the proposed control algorithm is more robust to the unexpected parameter variations and external noises.

  • PDF

진공용 나노 스테이지 개발을 위한 고찰

  • 홍원표;강은구;이석우;최헌종
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2004.05a
    • /
    • pp.223-228
    • /
    • 2004
  • Miniaturization is the central theme in modern fabrication technology. Many of the components used in modern products are becoming smaller and smaller. The direct write FIB technology has several advantages over contemporary micromachining technology, including better feature resolution with low lateral scattering and capability of maskless fabrication. Therefore, the application of FIB technology in micro fabrication has become increasingly popular. In recent model of FIB, however the feeding system has been a very coarse resolution of about a few $\mu\;\textrm{m}$. It is not unsuitable to the sputtering and the deposition to make the high-precision structure in micro or macro scale. Our research is the development of nano stage of 200mm strokes and 10nm resolutions. Also, this stage should be effectively operating in ultra high vacuum of about $1\times10^{-7}$ torr. This paper presents the concept of nano stages and the discussion of the material treatment for ultra high vacuum.

  • PDF

Design of Fuzzy PI Controller for Piezo Actuator of Nano Stage (나노 스테이지용 압전 구동기의 퍼지 PI 제어기 설계)

  • Cho, Seong-Yeon;Chung, Chung-Choo
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.629-632
    • /
    • 2003
  • Piezo actuators are mainly used in precision position control system because of their high position resolution. Although there have been many approaches in open loop control of this, those method turn out to be not effective in precision control due to hysteresis and creep. To overcome the problems, closed loop PI control method is used in commercial products. However, it is very difficult to obtain fast response with conventional PI control although piezo actuator has fast response. In this paper, we propose a fuzzy PI control method with the proposed fuzzy PI controller, we obtains faster settling response over the conventional PI controller. We verify the effectiveness of the proposed method with experimental results.

  • PDF

Robust Control for a Ultra-Precision Stage System (초정밀 스테이지의 강인 제어)

  • Park, Jong-Sung;Jeong, Kyu-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1094-1101
    • /
    • 2006
  • Recently, a ultra-precision stage is widely used in the fields of the nano-technology, specially in AFMs(Atomic Force Microscope) and STMs(Scanning Tunneling Microscope). In this paper, the ultra-precision stage which consists of flexure hinges, piezoelectric actuator and ultra-precision linear encoder, is designed and developed. The system transfer function of the ultra-precision stage system was derived from the step responses of the system using system identification tool. A $H_{\infty}$ controller was designed using loop shaping method to have robustness for the system uncertainty and external disturbances. For the designed controller, simulations were performed and it was applied to the ultra-precision stage system. From the experimental results it was found that this stage could be controlled with less than 5nm resolution irrespective of hysteresis and creep.

Application of sputtering for absorption of inorganic nano material on the PET surface

  • Ki, Sat-Byoul;Kim, Si-Deuk;Hong, Tae-Il;Koo, Kang
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2009.03a
    • /
    • pp.116-117
    • /
    • 2009
  • In this study, As a previous stage to manufacture disposable tent for military camouflage, we examine possibility of inorganic material absorption on PET surface. In order to, we created unevenness by sputtering process on PET surface and made absorption with Zirconium (ZIA) that has nano particles. and we went on study to its effect.

  • PDF

A Patent Analysis on Metal Injection Molding Technology (금속.사출성형 특허분석)

  • 길상철;배영문;이병민
    • Journal of Korea Technology Innovation Society
    • /
    • v.5 no.3
    • /
    • pp.382-395
    • /
    • 2002
  • Metal Injection Molding(MIM) is a technology without any mechanical processing, which is a promising area backed up by nano powder technology developed in late 1990's. The market was about 24 billion U$ in 1999. Many applications are made in process development, uses, powder making, hindering and sintering, of which order is in terms of the number of patents. This technologies are mainly developed by US firms, and applied by Japanese firms. Europe and Korea are still catch-up stage. More efforts should be made in this field because new opportunities are opening, thanks to nano technology.

  • PDF

Stability Analysis of a Micro Stage for Micro Cutting Machine with Various Hinge Type and Material Transformation (초정밀 가공기용 마이크로 스테이지의 힌지 형상과 재질 변화에 따른 안정성 해석)

  • Kim, Jae-Yeol;Kwak, Yi-Gu;Yoo, Sin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.233-240
    • /
    • 2003
  • Recently, the world are preparing for new revolution, called as If (Information Technology), NT (Nano-Technology), and BT (Bio-Technology). NT can be applied to various fields such as semiconductor-micro technology. Ultra precision processing is required for NT in the field of mechanical engineering. Recently, together with radical advancement of electronic and photonics industry, necessity of ultra precision processing is on the increase for the manufacture of various kernel parts. Therefore, in this paper, stability of ultra precision cutting unit is investigated, this unit is the kernel unit in ultra precision processing machine. According to alteration of shape and material about hinge, stability investigation is performed. In this paper, hinge shapes of micro stage in UPCU(Ultra Precision Cutting Unit) are designed as two types, where, hinge shapes are composed of round and rectangularity. Elasticity and strength are analyzed about micro stage, according to hinge shapes, by FE analysis. Micro stage in ultra precision processing machine has to keep hinge shape under cutting condition with 3-component force (cutting component, axial component, radial component) and to reduce modification against cutting force. Then we investigated its elasticity and its strength against these conditions. Material of micro stage is generally used to duralumin with small thermal deformation. But, stability of micro stage is investigated, according to elasticity and strength due to various materials, by FE analysis. Where, Used materials are composed of aluminum of low strength and cooper of medium strength and spring steel of high strength. Through this stability investigation, trial and error is reduced in design and manufacture, at the same time, we are accumulated foundation data for unit control.