• Title/Summary/Keyword: Nano sol

Search Result 325, Processing Time 0.029 seconds

Fabrication of Single Layer Anti-reflection Thin Film by Sol-gel Method (Sol-gel법에 의한 단층 반사 방지막 제조)

  • Park, Jong-Guk;Jeon, Dae-Woo;Lee, Mi-Jai;Lim, Tea-Young;Hwang, Jonghee;Bae, Dong-Sik;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.12
    • /
    • pp.821-825
    • /
    • 2015
  • Anti-reflective (AR) thin film was fabricated on a glass substrate by sol-gel method. The coating solution was synthesized with TEOS (tetraethlyorthosilicate) and poly ethylene glycol (PEG, 4.0 wt%). As the withdrawal speed of coating was changed from 0.1 mm/sec to 0.3 mm/sec, the thickness and refractive index of prepared thin films were changed. The reflectance and transmittance of coating glass fabricated by the withdrawal speed of 0.1 mm/sec were 0.62% and 95.0% in visible light range. The refractive index and thickness of single layer thin film were n= 1.29 and ca. 99.0 nm.

Synthesis of Nanoporous $TiO_2$ Materials Using Sol-gel Combustion Method and Its Photovoltaic Characteristics (나노 다공질 구조의 이산화티타늄 박막 제작과 광전변환 특성 고찰)

  • Heo, Jong-Hyun;Sung, Youl-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.322-326
    • /
    • 2009
  • In this work, nanoporous $TiO_2$ powder was fabricated using Ketjen black, and applied in photovoltaic device based on the Dye-sensitized Solar Cells (DSCs). $TiO_2$ powder was fabricated using Ti-isopropoxide and 2-propanol by sol-gel combustion method. For added $0{\sim}2g$ variable of Ketjen black, characteristic of porosity, size of particle and crystallite of obtained $TiO_2$ nano powder was investigated. The photovoltaic efficiency of the prepared DSCs was measured using $TiO_2$ film which prepared on each different heat treatment temperature($100^{\circ}C{\sim}600^{\circ}C$) with paste of $TiO_2$ powder. The porosity and size in particle of $TiO_2$ powder made with Ketjen black Ig was influenced significantly effect to DSCs characteristic. Heat treatment at $500^{\circ}C$ makes the better photovoltaic efficiency which around 6.11%($J_{sc}=13.35mA/cm^2$, $V_{oc}=0.73V$, ff=0.63). The sol-gel combustion method was useful to DSCs fabrication.

A comparative study of 3D printing and sol-gel polymer production techniques: A case study on usage of ABS polymer for radiation shielding

  • Hasan Ogul;Batuhan Gultekin;Fatih Bulut;Hakan Us
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.1943-1949
    • /
    • 2024
  • This study focuses on the comparative analysis of ABS polymer samples produced using two distinct manufacturing techniques: 3D printing and the sol-gel methods. In the first approach, ABS polymer was augmented with rare earth oxides, Er2O3 and Gd2O3, in nano powder form and fabricated into test specimens using 3D printing technology. In the second approach, identical samples were prepared via the sol-gel technique involving mold-based fabrication. Elemental content analysis revealed no significant differences between the samples produced by the two methods. The study proceeds to evaluate the gamma-ray shielding, neutron shielding, temperature resistance, and SEM/EDS pictures of ABS samples generated through both techniques. 3D printing method exhibited more favorable results in terms of structure morphology and thermal stability while there is no significant difference for radiation shielding. The results provide insights into the performance and suitability of each production method for radiation shielding applications. This research not only contributes to enhancing radiation shielding technology but also informs the selection of the most appropriate fabrication method for specific applications in nuclear technologies and diagnostic energy range in medical purposes.

Synthesis and Photocatalytic Effect of Brookite Phase $TiO_2$ Colloidal Sol by Hydrothermal Method (수열합성법을 이용한 Brookite $TiO2$ 졸의 제조 및 광촉매 효과)

  • Yoon, Cho-Rong;Oh, Hyo-Jin;Czoska, Anna;Park, Kyung-Soon;Lee, Nae-Sung;Kim, Sun-Jae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.117-120
    • /
    • 2006
  • $TiOCl_2$를 중화시키고 과산화수소와 반응시켜 Ti peroxo 전구체를 수열합성법을 이용하여 autoclave 반응기 내에서 가열하여 $TiO_2$ 졸을 제조하였다. Autoclave 반응기 내에 압력을 가하면 브룩카이트상 $TiO_2$졸이 형성됨을 확인하였고, 중화과정에서 NaCl을 첨가하여 Ti 수산화물 격자 내에 Na 이온을 포획되어 브룩카이트상이 나타남을 알 수 있었다. Na 이온의 첨가량에 따라 브룩카이트 결정상 함량이 달라져 광촉매 활성도 달라짐을 브룩카이트상 $TiO_2$가 코팅된 박막의 기상벤젠 광분해 실험을 통해 확인하였고 미세구조, 결정성, 광흡수도률 측정하여 특성평가를 실시하였다.

  • PDF

Fabrication of barium titanate-bismuth ferrite fibers using electrospinning

  • Baji, Avinash;Abtahi, Mojtaba
    • Advances in nano research
    • /
    • v.1 no.4
    • /
    • pp.183-192
    • /
    • 2013
  • One-dimensional multiferroic nanostructured composites have drawn increasing interest as they show tremendous potential for multifunctional devices and applications. Herein, we report the synthesis, structural and dielectric characterization of barium titanate ($BaTiO_3$)-bismuth ferrite ($BiFeO_3$) composite fibers that were obtained using a novel sol-gel based electrospinning technique. The microstructure of the fibers was investigated using scanning electron microscopy and transmission electron microscopy. The fibers had an average diameter of 120 nm and were composed of nanoparticles. X-ray diffraction (XRD) study of the composite fibers demonstrated that the fibers are composed of perovskite cubic $BaTiO_3$-$BiFeO_3$ crystallites. The magnetic hysteresis loops of the resultant fibers demonstrated that the fibers were ferromagnetic with magnetic coercivity of 1500 Oe and saturation magnetization of 1.55 emu/g at room temperature (300 K). Additionally, the dielectric response of the composite fibers was characterized as a function of frequency. Their dielectric permittivity was found to be 140 and their dielectric loss was low in the frequency range from 1000 Hz to $10^7$ Hz.

Synthesis and Characterization of Yttrium-doped Core-Shell SiO2 Nanoparticles by Reverse Micelle and Sol-gel Processing

  • Kim, Jun-Seop;Chu, Min-Cheol;Cho, Seong-Jai;Bae, Dong-Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.9
    • /
    • pp.512-517
    • /
    • 2008
  • In this study, yttrium-doped $SiO_2$ nanoparticles are synthesized using a reverse micelle technique combined with metal alkoxide hydrolysis and condensation. Spherical Y-doped $SiO_2$ nanoparticles with a uniform size distribution are prepared using selfassembly molecules in conjunction with the hydrolysis and condensation of organometallic precursors. The water/surfactant molar ratio influenced the Y-doped $SiO_2$ particles distribution of the core-shell composite particles and the distribution of Y doped $SiO_2$ particles was broadened as the water to surfactant ratio increased. The particle size of Y increase linearly as the $Y(NO_3)_3$ solution concentration increased. The average size of the cluster was found to depend on the micelle size, the nature of the solvent, and the concentration of the reagent. The effects of synthesis parameters, such as the molar ratio of water to surfactant and the molar ratio of water to TEOS, are discussed.

Characterization of Sol-gel Coated Pb(ZrTi)O3 Thin film for Piezoelectric Vibration MEMS Energy Harvester (압전 MEMS 진동에너지 수집소자를 위한 졸겔 공법기반의 Pb(ZrTi)O3 박막의 특성 분석 및 평가)

  • Park, Jong-C.;Park, Jae-Y.
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1240_1241
    • /
    • 2009
  • In this paper, sol-gel-spin coated $Pb(ZrTi)O_3$ thin film with $ZrO_2$ buffer-layer and $PbTiO_3$ seed-layer was investigated for vibration MEMS energy harvester to scavenge power from ambient vibration via d33 piezoelectric mode. Piezoelectric thin film deposition techniques on insulating layer is the important key for $d_{33}$ mode of piezoelectric vibration energy harvester. $ZrO_2$ buff-layer was utilized as an insulating layer. $PbTIO_3$ seed-layer was applied as an inter-layer between PZT and $ZrO_2$ layer to improve the crystalline of PZT thin film. The fabricated PZT thin film had a remanent polarization of 5.3uC/$cm^2$ and the coercive field of 60kV/cm. The fabricated energy harvester using PZT thin film with PTO seed-layer generated 1.1uW of electrical power to $2.2M{\Omega}$ of load with $4.4V_{pvp}$ from vibration of 0.39g at 528Hz.

  • PDF

Synthesis of Inorganic-Organic Composite Electrolyte Membranes for DMFCs (DMFC용 무기-유기 복합 전해질 막의 합성)

  • Kim, Eun-Hyung;Yoon, Gug-Ho;Park, Sung-Bum;Oh, Myung-Hoon;Kim, Sung-Jin;Park, Yong-Il
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.2
    • /
    • pp.119-125
    • /
    • 2008
  • The FAS(Fluoroalkylsilane)/Nafion inorganic-organic composite electrolyte membrane was successfully fabricated through sol-gel method. The FAS having hydrophobic functional group and silanol ligands is impregnated in $Nafion^{(R)}$ membrane to reduce methanol crossover. The prepared FAS/Nafion inorganic-organic composite electrolyte membrane consist of the hydrophobic FAS-derived silicate nano-particles and $Nafion^{(R)}$ matrix showed decrease of methanol crossover and reduction of humidity dependence without large sacrifice of proton conductivity. The microstructural analysis of the composite membranes was performed using FESEM and FTIR. And the effect of the incorporation of the hydrophobic FAS-derived silicate nano-particles into $Nafion^{(R)}$ membrane was investigated via solvent uptake, membrane expansion rate, humidity dependency of proton conductivity and contact angle measurement.

Barium Hexaferrite Thin Films Prepared by the Sol-Gel Method

  • An, Sung-Yong;Lee, Sang-Won;Shim, In-Bo;Yun, Sung-Roe;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • v.6 no.1
    • /
    • pp.23-26
    • /
    • 2001
  • Nano-crystalline hexaferrite $BaFe_{12}O_{19}$(BaM) thin films have been prepared by the sol-gel method. A solution of Ba-nitrate and Fe-nitrates was dissolved in solvent with the stoichiometric ratio Ba/Fe=1/10. Films were spin-coated onto $SiO_2$Si substrates, dried and then heated in air at various temperatures. In films prepared at a drying temperature $T_d=250^{\circ}C$ and a crystallizing temperature 650${\circ}C$, single-phase BaM was obtained. High coercivities were obtained in these nano-crystalline thin films, 4~5.5 kOe for hexaferrite. Polycrystalline BaM/$SiO_2$/Si(100) thin films were characterized by Rutherford backscattering (RBS), thermogravimetry (TGA), differential thermal analysis (DTA), x-ray diffraction (XRD), and vibrating sample magnetometry (VSM), as well as Fourier transform infrared spectroscopy (FTIR). The perpendicular coercivity $H_{C\bot}$ and in-plane coercivity $H_{CII}$ after annealing at 650${\circ}C$ for 2 hours were 4766 Oe and 4480 Oe, respectively, at room temperature, under a maximum applied field of 10 kOe.

  • PDF