• Title/Summary/Keyword: Nano sensor

Search Result 526, Processing Time 0.026 seconds

Preparation of Bio-Chemical Sensor Electrodes by Using Electrical Impedance Properties of Carbon Nanotube Based Bulk Materials (탄소나노튜브 기반 벌크 소재의 전기적 임피던스 특성을 이용한 생화학 센서용 전극 개발 연구)

  • So, Dae-Sup;Huh, Hoon;Kim, Hee-Jin;Lee, Hai-Won;Kang, In-Pil
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.495-499
    • /
    • 2010
  • To develop chemical and biosensors, this paper studies sensing characteristics of bulk carbon nanotube (CNT) electrodes by means of their electrical impedance properties due to their large surface area and excellence chemical absorptivity. The sensors were fabricated in the form of film and nano web style by using composite process for mass production. The bulk composite electrodes were fabricated with singlewall and multi-wall carbon nanotubes based on host polymers such as Nafion and PAN, using a solution-casting and an electrospinning technique. The resistance and the capacitance of electrodes were measured with LCR meter under the various amounts of buffer solution to study the electrical impedance change properties of them. On the experimental of sensor electrode, impedance characteristics of the composite electrode are affected by its host polymer and nanofiller and its sensing response showed saturated result after applying some amounts of buffer solution for test chemical. Especially, the capacitance values showed drastic changes while the resistance values only changed within few percent range. It is deduced that the ions in the solution penetrated and diffused into the electrodes surface changed the electrical properties of the electrodes much like a doping effect.

A Study on Environmental Micro-Dust Level Detection and Remote Monitoring of Outdoor Facilities

  • Kim, Seung Kyun;Mariappan, Vinayagam;Cha, Jae Sang
    • International journal of advanced smart convergence
    • /
    • v.9 no.1
    • /
    • pp.63-69
    • /
    • 2020
  • The rapid development in modern industrialization pollutant the water and atmospheric air across the globe that have a major impact on the human and livings health. In worldwide, every country government increasing the importance to improve the outdoor air pollution monitoring and control to provide quality of life and prevent the citizens and livings life from hazard disease. We proposed the environmental dust level detection method for outdoor facilities using sensor fusion technology to measure precise micro-dust level and monitor in realtime. In this proposed approach use the camera sensor and commercial dust level sensor data to predict the micro-dust level with data fusion method. The camera sensor based dust level detection uses the optical flow based machine learning method to detect the dust level and then fused with commercial dust level sensor data to predict the precise micro-dust level of the outdoor facilities and send the dust level informations to the outdoor air pollution monitoring system. The proposed method implemented on raspberry pi based open-source hardware with Internet-of-Things (IoT) framework and evaluated the performance of the system in realtime. The experimental results confirm that the proposed micro-dust level detection is precise and reliable in sensing the air dust and pollution, which helps to indicate the change in the air pollution more precisely than the commercial sensor based method in some extent.

Optimization of SWCNT-Coated Fabric Sensors for Human Joint Motion Sensing

  • Cho, Hyun-Seung;Park, Seon-Hyung;Yang, Jin-Hee;Park, Su-Youn;Han, Bo-Ram;Kim, Jin-Sun;Lee, Hae-Dong;Lee, Kang-Hwi;Lee, Jeong-Whan;Kang, Bok-Ku;Chon, Chang-Soo;Kim, Han-Sung;Lee, Joo-Hyeon
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2059-2066
    • /
    • 2018
  • This study explored the feasibility of utilizing an SWCNT-coated fabric sensor for the development of a wearable motion sensing device. The extent of variation in electric resistance of the sensor material was evaluated by varying the fiber composition of the SWCNT-coated base fabrics, attachment methods, number of layers, and sensor width and length. 32 sensors were fabricated by employing different combinations of these variables. Using a custom-built experimental jig, the amount of voltage change in a fabric sensor as a function of the length was measured as the fabric sensors underwent loading-unloading test with induced strains of 30 %, 40 %, and 50 % at a frequency of 0.5 Hz. First-step analysis revealed the following: characteristics of the strain-voltage curves of the fabric sensors confirmed that 14 out of 32 sensors were evaluated as more suitable for measuring human joint movement, as they yield stable resistance values under tension-release conditions; furthermore, significantly stable resistance values were observed at each level of strain. Secondly, we analyzed the averaged maximum, minimum, and standard deviations at various strain levels. From this analysis, it was determined that the two-layer sensor structure and welding attachment method contributed to the improvement of sensing accuracy.

Surface Modification of Gold Electrode Using Nafion Polymer and Its Application as an Impedance Sensor for Measuring Osmotic Pressure (나피온 폴리머를 이용한 금 전극의 표면 개질 및 이의 삼투압 측정용 임피던스 센서 응용)

  • Min Sik, Kil;Min Jae, Kim;Jo Hee, Yoon;Jinwu, Jang;Kyoung G., Lee;Bong Gill, Choi
    • Applied Chemistry for Engineering
    • /
    • v.34 no.1
    • /
    • pp.9-14
    • /
    • 2023
  • In this work, we developed a Nafion polymer-coated impedance sensor with two gold electrode configurations to measure the ion concentration in solution samples. The gold electrodes were fabricated through the sputtering process, followed by surface modification using Nafion polymer. The resulting sensors enable the prevention of the polarization phenomenon on the electrode surface, resulting in stable measurement of electrochemical signals. Spectroscopy and scanning electron microscopy measurements revealed that the thin film of Nafion was coated uniformly onto the surface of the gold electrode. The Nafion-coated sensor exhibited more stable impedance signals than the conventional gold electrode. It showed a highly reliable calibration curve (R2 = 0.983) of the impedance sensor using a standard sodium chloride solution. In addition, a comparison experiment between the impedance sensor and a commercial conductivity sensor was performed to measure the ion concentration of artificial tears, showing similar results for the two sensors.

The Fabrication and $NO_X$-sensing characteristics of $WO_3$-based semiconductor gas sensor for detecting sub-ppm level of $NO_X$ (초미량의 이산화질소가스 감지를 위한 텅스텐산화물계 반도체 가스 센서의 제조 및 $NO_X$ 감응 특성)

  • 이대식;임준우
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.601-604
    • /
    • 1998
  • NOX detecting gas sensors using TiO2 doped tungsten oxide semiconductor were prepared and their electrical and sensing characteristics have been investigated. In normal air condition, the sensors of WO3, TiO2 doped WO3 show grain boundary heights of 0.34 eV, 0.25 eV, respectively. The grain boundary barrier energy variation was increased by doping TiO2 into large variation of resistance to NOX gases. And doping the TiO2 4 wt.%, the particle size of WO3 polycrystal films showed higher sensitivity and better sorption characteristics to NOX gas than the pure WO3 films material in air at operating temperature of $350^{\circ}C.$ The TiO2 doped WO3 semiconductor gas sensor shows nano-sized particle size and good sensitivity to sub-ppm concentration of NOX.

  • PDF

Inductively coupled nanocomposite wireless strain and pH sensors

  • Loh, Kenneth J.;Lynch, Jerome P.;Kotov, Nicholas A.
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.531-548
    • /
    • 2008
  • Recently, dense sensor instrumentation for structural health monitoring has motivated the need for novel passive wireless sensors that do not require a portable power source, such as batteries. Using a layer-by-layer self-assembly process, nano-structured multifunctional carbon nanotube-based thin film sensors of controlled morphology are fabricated. Through judicious selection of polyelectrolytic constituents, specific sensing transduction mechanisms can be encoded within these homogenous thin films. In this study, the thin films are specifically designed to change electrical properties to strain and pH stimulus. Validation of wireless communications is performed using traditional magnetic coil antennas of various turns for passive RFID (radio frequency identification) applications. Preliminary experimental results shown in this study have identified characteristic frequency and bandwidth changes in tandem with varying strain and pH, respectively. Finally, ongoing research is presented on the use of gold nanocolloids and carbon nanotubes during layer-by-layer assembly to fabricate highly conductive coil antennas for wireless communications.

Effect of catalyst configuration on sensing properties of semiconductor gas sensor (반도체식 가스센서의 감지 특성에 미치는 촉매구조의 영향)

  • Hong, Sung-Jei;Han, Jeong-In;Kwak, Min-Gi;Jang, Hyun-Duk;Kim, Chul-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.711-714
    • /
    • 2002
  • 촉매 구조에 따른 반도체식 가스센서의 가스 감지 특성이 고찰되었다. 촉매로는 Pd를 사용하였고, 0.5 ~ 10wt% 의 다양한 농도로 약 15nm 크기의 $SnO_2$ 분말에 도핑, 가스센서를 제작하였다. 또한 열처리 온도를 $500{\sim}600^{\circ}C$로 다르게 하여 각 촉매 구조에 따른 특성의 변화를 관찰하였다. 그 결과 가스 감지 특성은 열처리 온도가 높을수록 감지 특성이 향상되었고, Pd 농도가 5wt% 에서 감도가 0.65로 좋은 감지 특성을 나타내었다. 5wt% Pd가 도핑된 가스센서는 2시간 동안 $400^{\circ}C$에서 aging 후에도 감도 값이 안정된 우수한 특성을 나타내었다.

  • PDF

Investigations on IT/ET and IT/BT Convergence Technology Using Power Line Communications (Power Line Communications을 이용한 IT/ET, IT/BT 컨버젼스 기술에 관한 연구)

  • Park, Mi-Kyoung;Huh, Young;Oh, Sang-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.250-252
    • /
    • 2006
  • Due to enhanced high IT (information technology) development, IT-based technology convergences such as IT/ET(electric technology), IT/BT(biology technology) and IT/NT(nano technology) are actively merging trend and their applications spread wide. In this paper PLC (power line communication), one of the merging IT, is investigated as one of the potential IT candidates for IT/ET and IT/BT convergence technology for DLC (direct load control) or bio-medical engineering such as ubiquitous health cares or D2H2 (distributed diagnosis and home health care).

  • PDF

Synergy of monitoring and security

  • Casciati, Sara;Chen, Zhi Cong;Faravelli, Lucia;Vece, Michele
    • Smart Structures and Systems
    • /
    • v.17 no.5
    • /
    • pp.743-751
    • /
    • 2016
  • An ongoing research project is devoted to the design and implementation of a satellite based asset tracking for supporting emergency management in crisis operations. Due to the emergency environment, one has to rely on a low power consumption wireless communication. Therefore, the communication hardware and software must be designed to match requirements, which can only be foreseen at the level of more or less likely scenarios. The latter aspect suggests a deep use of a simulator (instead of a real network of sensors) to cover extreme situations. The former power consumption remark suggests the use of a minimal computer (Raspberry Pi) as data collector.

Nanofinger Sensors for Health-related Applications

  • Kim, An-Sun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.113.1-113.1
    • /
    • 2014
  • Surface-enhanced Raman scattering (SERS) has long been projected as a powerful analytical technique for chemical and biological sensing applications. Pairing with portable Raman spectrometers makes the technique extremely appealing as real-time sensors for field application. However, the lack of reliable, uniform, low cost and ease-of-use SERS enhancement structures has prevented the wide adoption of this technique for general applications. We have discovered a novel hybrid structure based on the high-density and uniform arrays of gold nanofingers over a large surface area for SERS applications. The nanofingers are flexible and their tips can be brought together to trap molecules to mimic the biological system. We report here a rapid, simple, low-cost, and sensitive method of detecting trace level of food contaminants by using nanofinger chips based on portable SERS technique. We also present here the characterization of surface reaction of target molecules with our gold nanofinger substrates and the effect of nanofinger closing towards SERS performance. This new type of nano-structures can potentially revolutionize the medical and biologic research by providing a novel way to capture, localize, manipulate, and interrogate biological molecules with unprecedented capabilities.

  • PDF