• Title/Summary/Keyword: Nano carbon

Search Result 1,343, Processing Time 0.022 seconds

A Critical Evaluation of the Correlation Between Biomarkers of Folate and Vitamin $B_{12}$ in Nutritional Homocysteinemia (엽산과 비타민 $B_{12}$ 결핍에 의한 호모시스테인혈증 흰쥐의 조직내 비타민 지표간의 상관관계 분석)

  • Min, Hye-Sun;Kim, Mi-Sook
    • Journal of Nutrition and Health
    • /
    • v.42 no.5
    • /
    • pp.423-433
    • /
    • 2009
  • Folate and vitamin $B_{12}$ are essential cofactors for homocysteine (Hcy) metabolism. Homocysteinemia has been related with cardiovascular and neurodegenerative disease. We examined the effect of folate and/or vitamin $B_{12}$ deficiency on biomarkers of one carbon metabolism in blood, liver and brain, and analyzed the correlation between vitamin biomarkers in mild and moderate homocysteinemia. In this study, Sprague-Dawley male rats (5 groups, n = 10) were fed folatesufficient diet (FS), folate-deficient diet (FD) with 0 or 3 g homocystine (FSH and FDH), and folate-/vitamin $B_{12}$-deficient diet with 3 g homocystine (FDHCD) for 8 weeks. The FDH diet induced mild homocysteinemia (plasma Hcy 17.41 ${\pm}$ 1.94 nmol/mL) and the FDHCD diet induced moderate homocysteinemia (plasma Hcy 44.13 ${\pm}$ 2.65 nmol/mL), respectively. Although liver and brain folate levels were significantly lower compared with those values of rats fed FS or FSH (p < 0.001, p < 0.01 respectively), there were no significant differences in folate levels in liver and brain among the rats fed FD, FDH and FDHCD diet. However, rats fed FDHCD showed higher plasma folate levels (126.5 ${\pm}$ 9.6 nmol/L) compared with rats fed FD and FDH (21.1 ${\pm}$ 1.4 nmol/L, 22.0 ${\pm}$ 2.2 nmol/L)(p < 0.001), which is the feature of "ethyl-folate trap"by vitamin $B_{12}$ deficiency. Plasma Hcy was correlated with hepatic folate (r = -0.641, p < 0.01) but not with plasma folate or brain folate in this experimental condition. However, as we eliminated FDHCD group during correlation test, plasma Hcy was correlated with plasma folate (r = -0.581, p < 0.01), hepatic folate (r = -0.684, p < 0.01) and brain folate (r = -0.321, p < 0.05). Hepatic S-adenosylmethionine (SAM) level was lower in rats fed FD, FDH and FDHCD than in rats fed FS and FSH (p < 0.001, p < 0.001 respectively) and hepatic S-adenosylhomocysteine (SAH) level was significantly higher in those groups. The SAH level in brain was also significantly increased in rats fed FDHCD (p < 0.05). However, brain SAM level was not affected by folate and/or vitamin $B_{12}$ deficiency. This result suggests that dietary folate- and vitamin B12-deficiency may inhibit methylation in brain by increasing SAH rather than decreasing SAM level, which may be closely associated with impaired cognitive function in nutritional homocysteinemia.

Aging Effects On Partitioning Coefficients of Cd, Cu, and Zn in Metal-spiked Soils (토양에 유입된 카드뮴, 구리, 아연의 시간에 따른 분배 계수의 변화)

  • Kim, Bo-Jeong;McBride, Murray B.
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.5
    • /
    • pp.47-56
    • /
    • 2008
  • Temporal changes of metal solubility have been repeatedly observed in soils equilibrated with metal salt solutions. This phenomenon is known as aging, yet factors that affect the degree of metal aging remain largely unexamined. In this study, we compared the extent of aging on metal partitioning depending on soil, metal, and metal loading. Five soils spiked with four levels of Cd (2.5-20 mg ${kg}^{-1}$), Cu, and Zn (50-400 mg ${kg}^{-1}$) salt solutions were aged in the laboratory up to 1 year. The partitioning coefficient ($K_d$) of each metal was calculated from the ratio of total to dissolved metal concentration in samples collected at times ranging from 1 day to 1 year. The highest $K_d$ values for Cd, Cu and Zn were recorded in a Histosol, Andisol, and fine-textured Alfisol, respectively, whereas the lowest $K_d$ was recorded for an Oxisol and coarsetextured Alfisol. For all soils, a pattern of increasing Kd with aging was evident for Cd and Zn, but not Cu. Rapid Cu sorption was limited when dissolved organic matter was high in soils. In highly-retentive soils, $K_d$ values seemed to be insensitive to metal loading, although a longer period was required for the higher metal loadings to reach the same degree of metal aging as the lower loadings. In soils with low sorption capacity, the $K_d$ values were determined more by metal loading than by aging. Therefore, marked differences can be expected in the degree of metal aging in spiked soils by the soil type, metal and amount of metal added.

Food Sources of the Ascidian Styela clava Cultured in Suspension in Jindong Bay of Korea as Determined by C and N Stable Isotopes (탄소 및 질소안정동위원소 조성에 의한 남해안 진동만 양식 미더덕의 먹이원 평가)

  • Moon, Changho;Park, Hyun Je;Yun, Sung Gyu;Kwak, Jung Hyun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.4
    • /
    • pp.302-307
    • /
    • 2014
  • To examine the trophic ecology of the ascidian Styela clava in an aquaculture system of Korea, stable carbon and nitrogen isotopes were analyzed monthly in S. clava, coarse ($>20{\mu}m$, CPOM) and fine particulate organic matters ($0.7<<20{\mu}m$, FPOM). CPOM (means: $-18.5{\pm}1.2$‰, $9.3{\pm}0.7$‰) were significantly higher ${\delta}^{13}C$ and ${\delta}^{15}N$ values than those ($-20.5{\pm}1.5$‰, $8.4{\pm}0.5$‰) of FPOM. S. clava had mean ${\delta}^{13}C$ and ${\delta}^{15}N$ values of $-18.9({\pm}1.7)$‰ and $11.6({\pm}0.7)$‰, respectively. S. clava were more similar to seasonal variations in ${\delta}^{13}C$ and ${\delta}^{15}N$ values of FPOM than those of CPOM, suggesting that they rely largely on the FPOM as a dietary source. In addition, our results displayed that the relative importance between CPOM and FPOM as dietary source for the ascidians can be changed according to the availability of each component in ambient environment, probably reflecting their feeding plasticity due to non-selective feeding irrespective of particle size. Finally, our results suggest that dynamics of pico- and nano-size plankton (i.e., FPOM) as an available nutritional source to S. clava should be effectively assessed to maintain and manage their sustainable aquaculture production.