• Title/Summary/Keyword: Nano Ink

Search Result 117, Processing Time 0.032 seconds

Electric Circuit Fabrication Technology using Conductive Ink and Direct Printing

  • Jeong, Jae-U;Kim, Yong-Sik;Yun, Gwan-Su
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.12.1-12.1
    • /
    • 2009
  • For the micro conductive line, memory device fabrication process use many expensive processes such as manufactur-ing of photo mask, coating of photo resist, exposure, development, and etching. However, direct printing technology has the merits about simple and cost effective processes because nano-metal particles contained inks are directly injective without mask. And also, this technology has the advantage about fabrication of fine pattern line on various substrates such as FPCB, PCB, glass, polymer and so on. In this work, we have fabricated the fine and thick metal pattern line on flexible PCB substrate for the next generation electronic circuit using Ag nano-particles contained ink. To improve the line tolerance on flexible PCB, metal lines are fabricated by sequential prinitng method. Sequential printing method has vari-ous merits about fine, thick and high resolution pattern lines without bulge.

  • PDF

Environmental Life Cycle Assessments on Nano-silver Inks by Wet Chemical Reduction Process (습식환원법으로 제조한 은나노 잉크의 환경 전과정 평가)

  • Lee, Young-Sang;Hong, Tae-Whan
    • Clean Technology
    • /
    • v.21 no.2
    • /
    • pp.85-89
    • /
    • 2015
  • Utilized in a variety of electronic components, electronic components industry with metallic ink technology was established itself as a major technology research and development was gradually increasing, silver ink that is excellent in conductivity and stability, have long been used in the industry of electronic components in recent years and silver ink has been the size of nanoscale particles dispersed by developing display, an electronic tag, a flexible circuit board or the like used in the semiconductor and electronics as has been highlighted in, however industry modernization of equipment by increasing the production and consumption of products generated during the production process and environmental pollutants by use of waste products is expected to bring a serious environmental problem. In this study, prepared by a wet reduction method, the manufacturing process of the silver nano-ink to the entire process of the environmental impact assessment (LCA) was evaluated using the techniques. Life cycle assessment software GaBi 6 was used as received from the relevant agencies of the silver nano-ink data with reference to the manufacturing process, building inventory was international organization for standardization (ISO) 14040, 14044 compliant LCA conducted over four stages.

Fabrication of 1-${\mu}m$ channel length OTFTs by microcontact printing

  • Shin, Hong-Sik;Baek, Kyu-Ha;Yun, Ho-Jin;Ham, Yong-Hyun;Park, Kun-Sik;Lee, Ga-Won;Lee, Hi-Deok;Wang, Jin-Suk;Lee, Ki-Jun;Do, Lee-Mi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1118-1121
    • /
    • 2009
  • We have fabricated inverted staggered pentacene Thin Film Transistor (TFT) with 1-${\mu}m$ channel length by micro contact printing (${\mu}$-CP) method. Patterning of micro-scale source/drain electrodes without etching was successfully achieved using silver nano particle ink, Polydimethylsiloxane (PDMS) stamp and FC-150 flip chip aligner-bonder. Sheet resistance of the printed Ag nano particle films were effectively reduced by two step annealing at $180^{\circ}C$.

  • PDF

Fabrication of $TiO_2$-silver transparent thin films low-e coated on glass substrate by ink-jet printing (잉크젯 프린팅을 이용한 low-e $TiO_2$-silver 투명박막형성)

  • Yoon, Cho-Rong;Oh, Hyo-Jin;Lee, Nam-Hee;Guo, Yupeng;Kim, Byung-Whan;Kim, Sun-Jae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.511-511
    • /
    • 2007
  • Low-emissivity (low-e) coatings with visible transparency have attracted increased interest m reducing heat radiation loss through window panes from ecological and sustainable aspects. $TiO_2$-silver transparent thin films for low-e have good properties for UV and IR blocking as well as photocatalyst compared to that with commercial UV blocking films such as fluorine doped oxide (FTO), antimony doped tin oxide (ATO), etc. In this study, transparent $TiO_2$-silver thin films were prepared by successive ink-jet printing of commercial nano silver and $TiO_2$ sol. The $TiO_2$ sol, as ink for ink-jet printing, were synthesized by hydrothermal process in the autoclave externally pressurized with $N_2$ gas of 200 bar at $120^{\circ}C$ for 10 hrs. The synthesized $TiO_2$ sols were all formed with brookite phase and their particle size was several to 30 nm. At first nano sized silver sol was coated on glass substrate, after that $TiO_2$ sol was coated by ink-jet printing. With increasing coating thickness of $TiO_2$-silver multilayer by repeated ink-jet coating, the absorbance of UV region (under 400nm) and IR region (over 700nm) also increase reasonably, compared to that with commercial UV blocking films.

  • PDF

A control dispersion of $TiO_2$ nano powder for electronic paper of electrophoresis (전기영동형 전자종이를 위한 $TiO_2$ 나노분말의 분산 제어)

  • Kim, Jung-Hee;Oh, Hyo-Jin;Lee, Nam-Hee;Hwang, Jong-Sun;Kim, Sun-Jae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.324-327
    • /
    • 2005
  • An electrophoretic display using $TiO_2$ particles is the most promising candidate because it offers various advantages such as ink-on-paper appearance, good contrast ratio, wide viewing angle, image stability in the off-state and extremely low power consumption. The core technology of electrophoretic display is the dispersion controlling of $TiO_2$ nano particles in nonaqueous solution. To prepare an ink for electronic paper using electrophoretic properties of $TiO_2$ nano particles, cyclohexane with low dielectric constant and transparency, polyethylene for producing polymer coating layer which reduces apparent gravity of $TiO_2$, and $TiO_2$ powders were mixed together by planetary-mill. The zeta-potential value of $TiO_2$ particles in cyclohexane was measured about -40mV, but was measured over -110mV by dispersant attached to polyethylene-coated $TiO_2$ surface. Prepared electronic ink was filled in cross patterned micro-wall with $200{\mu}m$ in width and $40{\mu}m$ in height on ITO glass designed by photolithography. The response time of electronic paper evaluated by mobility of $TiO_2$ particle between micro-walls was measured 0.067sec, but the drift velocity from reflectance wave form during reverse from of electronic ink was measured 0.07cm/sec.

  • PDF

The analysis of bulging phenomenon for ink-jet printed silver inks (잉크젯 프린팅 된 실버잉크의 뭉침 현상에 대한 해석)

  • Kim, Myong-Ki;Shin, Kwon-Yong;Hwang, Jun-Young;Kang, Kyung-Tae;Kang, Heui-Seok;Lee, Sang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1525_1526
    • /
    • 2009
  • In this paper, we have studied the bulging phenomenon of ink-jet printed silver lines. The used silver inks are DGP-40LT-15C and DGH-55HTG of Advanced Nano Product (ANP) Company. We investigated the behavior of bulging by changing the polarity of the inks, the surface energy of substrate and droplet spacing in printing. The contact angle of the polar inks increased much more sensitively than the nonpolar ink as the surface energy of the substrate increases. In the case of the nonpolar ink, the bulging phenomenon occurred seriously as the droplet spacing decreased at the constant surface energy.

  • PDF

Inkjet Printable Transparent Conducting Oxide Electrodes

  • Kim, Han-Gi
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.59.2-59.2
    • /
    • 2011
  • We have demonstrated ink-jet printed indium tin oxide (ITO) and indium tin zinc oxide (IZTO) electrodes for cost-efficient organic solar cells (OSCs). By ink-jetting of crystalline ITO nano-particles and performing a rapid thermal anneal at $450^{\circ}C$, we were able to obtain directly patterned-ITO electrodes with an average transmittance of 84.14% and a sheet resistance of 202.7 Ohm/square without using a conventional photolithography process. The OSCs fabricated on the directly patterned ITO electrodes by ink-jet printing showed an open circuit voltage of 0.57 V, short circuit current of 8.47 mA/cm2, fill factor of 44%, and power conversion efficiency of 2.13%. This indicates that the ITO directly-patterned by ink-jet printing is a viable alternative to sputter-grown ITO electrodes for cost-efficient printing of OSCs due to the absence of a photolithography process for patterning and more efficient ITO material usage.

  • PDF

Synthesis of Concentrated Silver Nano Sol for Ink-Jet Method (잉크젯용 고농도 은 나노 졸 합성)

  • Park, Han-Sung;Seo, Dong-Soo;Choi, Youngmin;Chang, Hyunjoo;Kong, Ki-Jeong;Lee, Jung-O;Ryu, Beyong-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.9
    • /
    • pp.670-676
    • /
    • 2004
  • The synthesis of highly concentrated silver nano sol assisted by polymeric dispersant (polyelectrolytes) for inkjet method was studied. The silver nano sol was prepared with AgNO$_3$, polyelectrolytes (HS5468cf ; polyacrylic ammonium salt), and reducing agent. The polyelectrolytes play an important role in formation of complex composed of Ag$\^$+/ion and carboxyl group (COO$\^$-/), result in preparation of highly dispersed silver nano particles. The optimization of added amount of polyelectrolytes, and concentration of silver nano sol was studied. The silver nanoparticles were evaluated by XRD, particle size/zeta potential analyzer and FE-TEM. The silver nanoparticles with the range of 10 nm in diameter were produced. The concentration of batch-synthesized silver nano sol was possible up to 40 wt%.

Application of Inkjet Technology in Flat Panel Display

  • Ryu, Beyong-Hwan;Choi, Young-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.913-918
    • /
    • 2005
  • It is expected that the inkjet technology offers prospect for reliable and low cost manufacturing of FPD (Flat Panel Display). This inkjet technology also offers a more simplified manufacturing process for various part of the FPD than conventional process. For example, recently the novel manufacturing processes of color filter (C/F) in LCD, or RGB patterning in OLED by inkjet printing method have been developed. This elaborates will be considered as the precious point of manufacturing process for the mass production of enlarged-display panel with a low price. On this point of view, we would like to review the status of inkjet technology in FPD, with some results on forming micro line by inkjet patterning of suspension type silver nano ink as below. We have studied the inkjet patterning of synthesized aqueous silver nano-sol on interface-controlled ITO glass substrate. Furthermore, we designed the conductive ink for direct inkjet patterning on bare ITO glass substrate. The first, the highly concentrated polymeric dispersant-assisted silver nano sol was prepared. The high concentration of batch-synthesized silver nano sol was possible to 40 wt%. At the same time the particle size of silver nanoparticles was below $10{\sim}20nm$. The second, the synthesized silver nano sol was inkjet - patterned on ITO glass substrate. The connectivity and width of fine line depended largely on the wettability of silver nano sol on ITO glass substrate, which was controlled by surfactant. The relationship was understood by wetting angle. The line of silver electrode as fine as $50{\sim}100\;{\mu}m$ was successfully formed on ITO glass substrate. The last, the direct inkjet-patternable silver nano sol on bare ITO glass substrate was designed also.

  • PDF

Conductive Inks Manufactured with the Help of Low Melting Metals (용해도 낮은 금속을 이용한 전기 전도성 잉크)

  • Han, Kenneth N.;Kim, Nam-Soo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.126-131
    • /
    • 2008
  • In this investigation, various factors affecting manufacturing conductive inks are presented, examined and discussed. The discussion includes inherent difficulties in making conductive inks successful and at the same time offers ways in which these difficulties might be overcome. One of the solutions to overcome such difficulties is to use low melting metals and alloys. This aspect is also detailed.