• Title/Summary/Keyword: Named entity classification

Search Result 21, Processing Time 0.026 seconds

Classifying Articles in Chinese Wikipedia with Fine-Grained Named Entity Types

  • Zhou, Jie;Li, Bicheng;Tang, Yongwang
    • Journal of Computing Science and Engineering
    • /
    • v.8 no.3
    • /
    • pp.137-148
    • /
    • 2014
  • Named entity classification of Wikipedia articles is a fundamental research area that can be used to automatically build large-scale corpora of named entity recognition or to support other entity processing, such as entity linking, as auxiliary tasks. This paper describes a method of classifying named entities in Chinese Wikipedia with fine-grained types. We considered multi-faceted information in Chinese Wikipedia to construct four feature sets, designed different feature selection methods for each feature, and fused different features with a vector space using different strategies. Experimental results show that the explored feature sets and their combination can effectively improve the performance of named entity classification.

Improving classification of low-resource COVID-19 literature by using Named Entity Recognition

  • Lithgow-Serrano, Oscar;Cornelius, Joseph;Kanjirangat, Vani;Mendez-Cruz, Carlos-Francisco;Rinaldi, Fabio
    • Genomics & Informatics
    • /
    • v.19 no.3
    • /
    • pp.22.1-22.5
    • /
    • 2021
  • Automatic document classification for highly interrelated classes is a demanding task that becomes more challenging when there is little labeled data for training. Such is the case of the coronavirus disease 2019 (COVID-19) clinical repository-a repository of classified and translated academic articles related to COVID-19 and relevant to the clinical practice-where a 3-way classification scheme is being applied to COVID-19 literature. During the 7th Biomedical Linked Annotation Hackathon (BLAH7) hackathon, we performed experiments to explore the use of named-entity-recognition (NER) to improve the classification. We processed the literature with OntoGene's Biomedical Entity Recogniser (OGER) and used the resulting identified Named Entities (NE) and their links to major biological databases as extra input features for the classifier. We compared the results with a baseline model without the OGER extracted features. In these proof-of-concept experiments, we observed a clear gain on COVID-19 literature classification. In particular, NE's origin was useful to classify document types and NE's type for clinical specialties. Due to the limitations of the small dataset, we can only conclude that our results suggests that NER would benefit this classification task. In order to accurately estimate this benefit, further experiments with a larger dataset would be needed.

Named Entity Recognition and Dictionary Construction for Korean Title: Books, Movies, Music and TV Programs (한국어 제목 개체명 인식 및 사전 구축: 도서, 영화, 음악, TV프로그램)

  • Park, Yongmin;Lee, Jae Sung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.7
    • /
    • pp.285-292
    • /
    • 2014
  • A named entity recognition method is used to improve the performance of information retrieval systems, question answering systems, machine translation systems and so on. The targets of the named entity recognition are usually PLOs (persons, locations and organizations). They are usually proper nouns or unregistered words, and traditional named entity recognizers use these characteristics to find out named entity candidates. The titles of books, movies and TV programs have different characteristics than PLO entities. They are sometimes multiple phrases, one sentence, or special characters. This makes it difficult to find the named entity candidates. In this paper we propose a method to quickly extract title named entities from news articles and automatically build a named entity dictionary for the titles. For the candidates identification, the word phrases enclosed with special symbols in a sentence are firstly extracted, and then verified by the SVM with using feature words and their distances. For the classification of the extracted title candidates, SVM is used with the mutual information of word contexts.

An Active Co-Training Algorithm for Biomedical Named-Entity Recognition

  • Munkhdalai, Tsendsuren;Li, Meijing;Yun, Unil;Namsrai, Oyun-Erdene;Ryu, Keun Ho
    • Journal of Information Processing Systems
    • /
    • v.8 no.4
    • /
    • pp.575-588
    • /
    • 2012
  • Exploiting unlabeled text data with a relatively small labeled corpus has been an active and challenging research topic in text mining, due to the recent growth of the amount of biomedical literature. Biomedical named-entity recognition is an essential prerequisite task before effective text mining of biomedical literature can begin. This paper proposes an Active Co-Training (ACT) algorithm for biomedical named-entity recognition. ACT is a semi-supervised learning method in which two classifiers based on two different feature sets iteratively learn from informative examples that have been queried from the unlabeled data. We design a new classification problem to measure the informativeness of an example in unlabeled data. In this classification problem, the examples are classified based on a joint view of a feature set to be informative/non-informative to both classifiers. To form the training data for the classification problem, we adopt a query-by-committee method. Therefore, in the ACT, both classifiers are considered to be one committee, which is used on the labeled data to give the informativeness label to each example. The ACT method outperforms the traditional co-training algorithm in terms of f-measure as well as the number of training iterations performed to build a good classification model. The proposed method tends to efficiently exploit a large amount of unlabeled data by selecting a small number of examples having not only useful information but also a comprehensive pattern.

Korean Named Entity Recognition and Classification using Word Embedding Features (Word Embedding 자질을 이용한 한국어 개체명 인식 및 분류)

  • Choi, Yunsu;Cha, Jeongwon
    • Journal of KIISE
    • /
    • v.43 no.6
    • /
    • pp.678-685
    • /
    • 2016
  • Named Entity Recognition and Classification (NERC) is a task for recognition and classification of named entities such as a person's name, location, and organization. There have been various studies carried out on Korean NERC, but they have some problems, for example lacking some features as compared with English NERC. In this paper, we propose a method that uses word embedding as features for Korean NERC. We generate a word vector using a Continuous-Bag-of-Word (CBOW) model from POS-tagged corpus, and a word cluster symbol using a K-means algorithm from a word vector. We use the word vector and word cluster symbol as word embedding features in Conditional Random Fields (CRFs). From the result of the experiment, performance improved 1.17%, 0.61% and 1.19% respectively for TV domain, Sports domain and IT domain over the baseline system. Showing better performance than other NERC systems, we demonstrate the effectiveness and efficiency of the proposed method.

Named entity normalization for traditional herbal formula mentions

  • Ho Jang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.10
    • /
    • pp.105-111
    • /
    • 2024
  • In this paper, we propose methods for the named entity normalization of traditional herbal formula found in medical texts. Specifically, we developed methodologies to determine whether mentions, such as full names of herbal formula and their abbreviations, refer to the same concept. Two different approaches were attempted. First, we built a supervised classification model that uses BERT-based contextual vectors and character similarity features of herbal formula mentions in medical texts to determine whether two mentions are identical. Second, we applied a prompt-based querying method using GPT-4o mini and GPT-4o to perform the same task. Both methods achieved over 0.9 in Precision, Recall, and F1-score, with the GPT-4o-based approach demonstrating the highest Precision and F1-Score. The results of this study demonstrate the effectiveness of machine learning-based approaches for named entity normalization in traditional medicine texts, with the GPT-4o-based method showing superior performance. This suggests its potential as a valuable foundation for the development of intelligent information extraction systems in the traditional medicine domain.

A Muti-Resolution Approach to Restaurant Named Entity Recognition in Korean Web

  • Kang, Bo-Yeong;Kim, Dae-Won
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.277-284
    • /
    • 2012
  • Named entity recognition (NER) technique can play a crucial role in extracting information from the web. While NER systems with relatively high performances have been developed based on careful manipulation of terms with a statistical model, term mismatches often degrade the performance of such systems because the strings of all the candidate entities are not known a priori. Despite the importance of lexical-level term mismatches for NER systems, however, most NER approaches developed to date utilize only the term string itself and simple term-level features, and do not exploit the semantic features of terms which can handle the variations of terms effectively. As a solution to this problem, here we propose to match the semantic concepts of term units in restaurant named entities (NEs), where these units are automatically generated from multiple resolutions of a semantic tree. As a test experiment, we applied our restaurant NER scheme to 49,153 nouns in Korean restaurant web pages. Our scheme achieved an average accuracy of 87.89% when applied to test data, which was considerably better than the 78.70% accuracy obtained using the baseline system.

Comparative study of text representation and learning for Persian named entity recognition

  • Pour, Mohammad Mahdi Abdollah;Momtazi, Saeedeh
    • ETRI Journal
    • /
    • v.44 no.5
    • /
    • pp.794-804
    • /
    • 2022
  • Transformer models have had a great impact on natural language processing (NLP) in recent years by realizing outstanding and efficient contextualized language models. Recent studies have used transformer-based language models for various NLP tasks, including Persian named entity recognition (NER). However, in complex tasks, for example, NER, it is difficult to determine which contextualized embedding will produce the best representation for the tasks. Considering the lack of comparative studies to investigate the use of different contextualized pretrained models with sequence modeling classifiers, we conducted a comparative study about using different classifiers and embedding models. In this paper, we use different transformer-based language models tuned with different classifiers, and we evaluate these models on the Persian NER task. We perform a comparative analysis to assess the impact of text representation and text classification methods on Persian NER performance. We train and evaluate the models on three different Persian NER datasets, that is, MoNa, Peyma, and Arman. Experimental results demonstrate that XLM-R with a linear layer and conditional random field (CRF) layer exhibited the best performance. This model achieved phrase-based F-measures of 70.04, 86.37, and 79.25 and word-based F scores of 78, 84.02, and 89.73 on the MoNa, Peyma, and Arman datasets, respectively. These results represent state-of-the-art performance on the Persian NER task.

Token-Based Classification and Dataset Construction for Detecting Modified Profanity (변형된 비속어 탐지를 위한 토큰 기반의 분류 및 데이터셋)

  • Sungmin Ko;Youhyun Shin
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.4
    • /
    • pp.181-188
    • /
    • 2024
  • Traditional profanity detection methods have limitations in identifying intentionally altered profanities. This paper introduces a new method based on Named Entity Recognition, a subfield of Natural Language Processing. We developed a profanity detection technique using sequence labeling, for which we constructed a dataset by labeling some profanities in Korean malicious comments and conducted experiments. Additionally, to enhance the model's performance, we augmented the dataset by labeling parts of a Korean hate speech dataset using one of the large language models, ChatGPT, and conducted training. During this process, we confirmed that filtering the dataset created by the large language model by humans alone could improve performance. This suggests that human oversight is still necessary in the dataset augmentation process.

Multi-labeled Domain Detection Using CNN (CNN을 이용한 발화 주제 다중 분류)

  • Choi, Kyoungho;Kim, Kyungduk;Kim, Yonghe;Kang, Inho
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.56-59
    • /
    • 2017
  • CNN(Convolutional Neural Network)을 이용하여 발화 주제 다중 분류 task를 multi-labeling 방법과, cluster 방법을 이용하여 수행하고, 각 방법론에 MSE(Mean Square Error), softmax cross-entropy, sigmoid cross-entropy를 적용하여 성능을 평가하였다. Network는 음절 단위로 tokenize하고, 품사정보를 각 token의 추가한 sequence와, Naver DB를 통하여 얻은 named entity 정보를 입력으로 사용한다. 실험결과 cluster 방법으로 문제를 변형하고, sigmoid를 output layer의 activation function으로 사용하고 cross entropy cost function을 이용하여 network를 학습시켰을 때 F1 0.9873으로 가장 좋은 성능을 보였다.

  • PDF