• Title/Summary/Keyword: Named entity (NE) extraction

Search Result 6, Processing Time 0.019 seconds

HMM-based Korean Named Entity Recognition (HMM에 기반한 한국어 개체명 인식)

  • Hwang, Yi-Gyu;Yun, Bo-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.10B no.2
    • /
    • pp.229-236
    • /
    • 2003
  • Named entity recognition is the process indispensable to question answering and information extraction systems. This paper presents an HMM based named entity (m) recognition method using the construction principles of compound words. In Korean, many named entities can be decomposed into more than one word. Moreover, there are contextual relationships among nouns in an NE, and among an NE and its surrounding words. In this paper, we classify words into a word as an NE in itself, a word in an NE, and/or a word adjacent to an n, and train an HMM based on NE-related word types and parts of speech. Proposed named entity recognition (NER) system uses trigram model of HMM for considering variable length of NEs. However, the trigram model of HMM has a serious data sparseness problem. In order to solve the problem, we use multi-level back-offs. Experimental results show that our NER system can achieve an F-measure of 87.6% in the economic articles.

Lightweight Named Entity Extraction for Korean Short Message Service Text

  • Seon, Choong-Nyoung;Yoo, Jin-Hwan;Kim, Hark-Soo;Kim, Ji-Hwan;Seo, Jung-Yun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.3
    • /
    • pp.560-574
    • /
    • 2011
  • In this paper, we propose a hybrid method of Machine Learning (ML) algorithm and a rule-based algorithm to implement a lightweight Named Entity (NE) extraction system for Korean SMS text. NE extraction from Korean SMS text is a challenging theme due to the resource limitation on a mobile phone, corruptions in input text, need for extension to include personal information stored in a mobile phone, and sparsity of training data. The proposed hybrid method retaining the advantages of statistical ML and rule-based algorithms provides fully-automated procedures for the combination of ML approaches and their correction rules using a threshold-based soft decision function. The proposed method is applied to Korean SMS texts to extract person's names as well as location names which are key information in personal appointment management system. Our proposed system achieved 80.53% in F-measure in this domain, superior to those of the conventional ML approaches.

Acquisition of Named-Entity-Related Relations for Searching

  • Nguyen, Tri-Thanh;Shimazu, Akira
    • Proceedings of the Korean Society for Language and Information Conference
    • /
    • 2007.11a
    • /
    • pp.349-357
    • /
    • 2007
  • Named entities (NEs) are important in many Natural Language Processing (NLP) applications, and discovering NE-related relations in texts may be beneficial for these applications. This paper proposes a method to extract the ISA relation between a "named entity" and its category, and an IS-RELATED-TO relation between the category and its related object. Based on the pattern extraction algorithm "Person Category Extraction" (PCE), we extend it for solving our problem. Our experiments on Wall Street Journal (WSJ) corpus show promising results. We also demonstrate a possible application of these relations by utilizing them for semantic search.

  • PDF

Named Entity and Coreference Tagging for Information Extraction (정보추출을 위한 고유명사 및 대용어 태깅)

  • Jang, Sung-Ho;Kang, Seung-Shik;Woo, Chong-Woo;Yun, Bo-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.04b
    • /
    • pp.1111-1114
    • /
    • 2002
  • 최근 정보추출에 대한 중요성이 점차 증가하면서 정보추출에서 필요로 하는 Named Entity와 Coreference, Information Extraction, Information Retrieval의 소개와 한국어에 대해 적용시키기 위한 정의와 방법을 제시한다. 또한, 대량의 문서에 대한 태깅을 효율적으로 수행할 수 있도록 Named Entity와 Coreference 태깅을 쉽게 할 수 있는 NE-CO 태깅 도구를 개발하였다. 이 태깅 도구를 이용하여 시험적으로 경제, 공연, 여행 분야의 300문서에 대한 말뭉치를 구축하였으며, 이 말뭉치는 한국어 정보추출 시스템을 개발하는데 기초 자료로서 활용될 예정이다.

  • PDF

Korean Relation Extraction Using Pre-Trained Language Model and GCN (사전학습 언어모델과 GCN을 이용한 한국어 관계 추출)

  • Je-seung Lee;Jae-hoon Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.379-384
    • /
    • 2022
  • 관계 추출은 두 개체 간의 관계를 식별하는 작업이며, 비정형 텍스트를 구조화시키는 역할을 하는 작업 중 하나이다. 현재 관계 추출에서 다양한 모델에 대한 연구들이 진행되고 있지만, 한국어 관계 추출 모델에 대한 연구는 영어에 비해 부족하다. 따라서 본 논문에서는 NE(Named Entity)태그 정보가 반영된 TEM(Typed Entity Marker)과 의존 구문 그래프를 이용한 한국어 관계 추출 모델을 제안한다. 모델의 학습과 평가 말뭉치는 KLUE에서 제공하는 관계 추출 학습 말뭉치를 사용하였다. 실험 결과 제안 모델이 68.57%의 F1 점수로 실험 모델 중 가장 높은 성능을 보여 NE태그와 구문 정보가 관계 추출 성능을 향상시킬 수 있음을 보였다.

  • PDF

Feature Generation of Dictionary for Named-Entity Recognition based on Machine Learning (기계학습 기반 개체명 인식을 위한 사전 자질 생성)

  • Kim, Jae-Hoon;Kim, Hyung-Chul;Choi, Yun-Soo
    • Journal of Information Management
    • /
    • v.41 no.2
    • /
    • pp.31-46
    • /
    • 2010
  • Now named-entity recognition(NER) as a part of information extraction has been used in the fields of information retrieval as well as question-answering systems. Unlike words, named-entities(NEs) are generated and changed steadily in documents on the Web, newspapers, and so on. The NE generation causes an unknown word problem and makes many application systems with NER difficult. In order to alleviate this problem, this paper proposes a new feature generation method for machine learning-based NER. In general features in machine learning-based NER are related with words, but entities in named-entity dictionaries are related to phrases. So the entities are not able to be directly used as features of the NER systems. This paper proposes an encoding scheme as a feature generation method which converts phrase entities into features of word units. Futhermore, due to this scheme, entities with semantic information in WordNet can be converted into features of the NER systems. Through our experiments we have shown that the performance is increased by about 6% of F1 score and the errors is reduced by about 38%.