• Title/Summary/Keyword: Named Entity

Search Result 221, Processing Time 0.025 seconds

Deep Learning based Sentence Analysis for Query Generation (검색어 생성을 위한 딥 러닝 기반 문장 분석 연구)

  • Na, Seong-Won;Yoon, Kyoungro
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.336-337
    • /
    • 2018
  • 최근 이미지의 Visual 정보를 추출하고 Multi label 분류를 통해 나온 결과의 상관관계를 modeling하여 문장으로 출력하는 CNN-RNN 아키텍처가 많은 발전을 이뤘다. 이 아키텍처의 출력은 이미지의 정보가 요약되어 문장으로 표현되기 때문에 Semantic정보가 풍부하여 유사 콘텐츠 검색에도 사용 가능하다. 하지만 결과 문장에 사람이 포함 되면 광범위한 검색 결과를 얻게 되고 부정확한 결과를 초래하게 된다. 이에 본 논문에서는 문장에서 사람을 인식하여 Identity를 부여함으로써 검색어를 좀 더 구체적으로 생성하고자 한다. 이 문제를 해결하기 위해 자연어 처리의 분야 중 하나인 개체명 인식(Named Entity Recognition) 문제로 다루며, 가장 많이 사용되고 있는 모델인 Bidirectional-LSTM-CRF와 CoNLL2003 dataset을 사용하여 수행 한다.

  • PDF

Building a text collection for Urdu information retrieval

  • Rasheed, Imran;Banka, Haider;Khan, Hamaid M.
    • ETRI Journal
    • /
    • v.43 no.5
    • /
    • pp.856-868
    • /
    • 2021
  • Urdu is a widely spoken language in the Indian subcontinent with over 300 million speakers worldwide. However, linguistic advancements in Urdu are rare compared to those in other European and Asian languages. Therefore, by following Text Retrieval Conference standards, we attempted to construct an extensive text collection of 85 304 documents from diverse categories covering over 52 topics with relevance judgment sets at 100 pool depth. We also present several applications to demonstrate the effectiveness of our collection. Although this collection is primarily intended for text retrieval, it can also be used for named entity recognition, text summarization, and other linguistic applications with suitable modifications. Ours is the most extensive existing collection for the Urdu language, and it will be freely available for future research and academic education.

Korean Named Entity Recognition using D-Tag (D-Tag를 이용한 한국어 개체명 인식)

  • Eunsu Kim;Sujong Do;Cheoneum Park
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.35-40
    • /
    • 2022
  • 본 논문에서는 시퀀스 레이블링 문제(sequence labeling problem)인 개체명 인식에 사용할 새로운 태깅 포맷인 Delimiter tag (D-tag)를 소개한다. 시퀀스 레이블링 문제에서 사용하는 BIO-tag 포맷은 개체명 레이블을 B (beginning)와 I (inside) 의미의 레이블로 확장하여 타겟 클래스의 수가 2배 증가한다. 또한 BIO-tag 포맷을 사용할 경우, 모델이 B와 I 를 잘못 분류하는 문제가 발생하며, 레이블 수가 많은 세부 분류 개체명의 경우에는 label confusion을 야기한다. 본 논문에서 제안한 D-tag 포맷은 타겟 클래스의 수를 증가시키지 않기 때문에 앞서 언급한 문제를 해결할 수 있다. 실험 결과, D-tag를 사용하여 학습한 모델이 BIO-tag를 사용한 경우보다 더 좋은 성능을 보여, 유망함을 확인하였다.

  • PDF

Detecting and classification ADRs using Named Entity Recognition on social media (개체명 인식을 이용한 소셜 미디어에서의 약물 부작용 표현 추출 및 분류)

  • Jeong, Hyeon-jeong;Kim, Hyon Hee
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.443-446
    • /
    • 2021
  • 의약품에 대한 안전성 정보 수집과 관리는 온라인, 오프라인을 통해 약물 이상 사례를 보고받는 형태로 진행되고 있다. 하지만 소비자들의 자발적인 참여로 이루어지므로 실제 발생하는 약물 부작용보다 데이터가 현저히 적다는 단점이 존재한다. 본 논문에서는 약물 이상 데이터 희소성 문제를 해결 할 수 있도록 소셜 미디어에서 약물 부작용 표현을 찾을 수 있도록 하였다. 소셜 미디어의 경우에는 표준 약물 부작용 용어를 사용하기보다는 일반인들이 자연어로 표현한 경우가 많으므로 개체명 인식 기법을 이용해 부작용을 추출할 수 있는 모델을 개발하였다. 또한 추출된 부작용 표현을 표준용어로 분류할 수 있는 모델을 제시하였다. 실험 결과 제안한 두 가지 모델은 0.9 이상의 정확도를 얻을 수 있었으며, 일반 사용자들이 자연어로 표현한 약물 부작용 표현을 효과적으로 찾아내고 표준 부작용 용어로 매핑할 수 있음을 보여준다.

Integrated Char-Word Embedding on Chinese NER using Transformer (트랜스포머를 이용한 중국어 NER 관련 문자와 단어 통합 임배딩)

  • Jin, ChunGuang;Joe, Inwhee
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.415-417
    • /
    • 2021
  • Since the words and words in Chinese sentences are continuous and the length of vocabulary is huge, Chinese NER(Named Entity Recognition) always based on character representation. In recent years, many Chinese research has been reconsidered how to integrate the word information into the Chinese NER model. However, the traditional sequence model has complex structure, the slow inference speed, and an additional dictionary information is needed, which is difficult to implement in the industry. The approach in this paper has the state of the art and parallelizable, which is integrated the char-word embeddings, so that the model learns word information. The proposed model is easy to implement, and outperforms traditional model in terms of speed and efficiency, which is improved f1-score on two dataset.

How to Use Effective Dictionary Feature for Deep Learning based Named Entity Recognition (딥러닝 기반의 개체명 인식을 위한 효과적인 사전 자질 사용 방법)

  • Kim, Hong-Jin;Kim, Hark-Soo
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.293-296
    • /
    • 2019
  • 개체명 인식은 입력 문장에서 인명, 지명, 기관명, 날짜, 시간과 같이 고유한 의미를 갖는 단어들을 찾아 개체명을 부착하는 기술이다. 최근 개체명 인식기는 형태소 단위나 음절 단위의 입력을 사용하는 연구가 주로 진행되고 있다. 그러나 형태소 단위 개체명 인식은 미등록어를 처리하지 못하는 문제점이 존재하고 음절 단위 개체명 인식은 단어의 의미를 제대로 반영하지 못하는 문제점이 존재한다. 본 논문에서는 이 문제점을 보완하기 위해 품사 정보를 활용한 음절 단위 개체명 인식기를 제안한다. 또한 개체명 인식 성능에 큰 영향을 미치는 개체명 사전 자질을 더 효과적으로 사용할 수 있는 방법을 제안하며 이 방법을 사용했을 때 기존의 방법보다 향상된 개체명 인식 성능(F1-score 0.8576)을 보였다.

  • PDF

BART for Korean Natural Language Processing: Named Entity Recognition, Sentiment Analysis, Semantic role labelling (BART를 이용한 한국어 자연어처리: 개체명 인식, 감성분석, 의미역 결정)

  • Hong, Seung-Yean;Na, Seung-Hoon;Shin, Jong-Hoon;Kim, Young-Kil
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.172-175
    • /
    • 2020
  • 최근 자연어처리는 대용량 코퍼스를 이용하여 언어 모델을 사전 학습하고 fine-tuning을 적용함으로 다양한 태스크에서 최고 성능을 갱신하고 있다. BERT기반의 언어 모델들은 양방향의 Transformer만 모델링 되어 있지만 BART는 양방향의 Transformer와 Auto-Regressive Transformer가 결합되어 사전학습을 진행하는 모델로 본 논문에서는 540MB의 코퍼스를 이용해 한국어 BART 모델을 학습 시키고 여러 한국어 자연어처리 태스크에 적용하여 성능 향상 있음을 보였다.

  • PDF

Named Entity Tagged Corpus Augmentation Using Co-hyponym Replacement (형제어 대체를 이용한 개체명 말뭉치 확장)

  • Kim, Jae-Kyun;Kim, Chang-Hyun;Cheon, Min-Ah;Park, Hyuk-Ro;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.179-183
    • /
    • 2020
  • 말뭉치는 기계학습 및 심층학습을 위한 필수 자원이다. 한국어 개체명의 경우 학습에 사용할 잘 정제된 개체명 부착 말뭉치가 충분하지 않다. 말뭉치 정제 작업은 시간적, 경제적으로 많은 비용이 소모된다. 따라서 본 논문에서는 적은 양의 말뭉치를 이용하여 말뭉치를 자동적으로 확장하는 방법을 제안한다. 특별히 소규모 말뭉치에 속하는 문장의 단어에 대한 형제어들을 선정하여 형제어의 확률추출을 기반으로 대체함으로써 새로운 문장을 생성함으로써 말뭉치 확장하는 방법이다. 본 논문에서는 확장된 말뭉치를 이용해서 대부분의 시스템에서 성능이 향상됨을 확인할 수 있었다. 앞으로 단어의 삭제 및 삽입 등 다양한 방법으로 좀 더 다양한 문장을 생성할 수 있을 것으로 생각합니다.

  • PDF

Korean Named-entity Recognition Using CNN-CRFs (CNN-CRFs를 이용한 한국어 개체명 인식기)

  • You, Yeon-Soo;Park, Hyuk-Ro
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.78-80
    • /
    • 2019
  • 개체명 인식 연구에서 우수한 성능을 보이고 있는 bi-LSTM-CRFs 모델은 처리 속도가 느린 단점이 있고, CNN-CRFs 모델은 한국어 말뭉치를 사용하여 제대로 분석되지 않았다. 본 논문에서는 한국어 개체명 인식 말뭉치를 이용한 CNN-CRFs 모델의 음절 단위 한국어 개체명 인식 방법을 제안한다. 실험 결과 bi-LSTM-CRFs 모델보다 CNN-CRFs 모델의 F1 score가 0.4% 높았고, 27.5% 빠른 처리 속도를 보였다.

  • PDF

Factual consistency checker through a question-answer test based on the named entity (개체명 기반 질문-답변 검사를 통한 요약문 사실관계 확인)

  • Jung, Jeesu;Ryu, Hwijung;Chang, Dusung;Chung, Riwoo;Jung, Sangkeun
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.112-117
    • /
    • 2021
  • 기계 학습을 활용하여 요약문을 생성했을 경우, 해당 요약문의 정확도를 측정할 수 있는 도구는 필수적이다. 원문에 대한 요약문의 사실관계 일관성의 파악을 위해 개체명 유사도, 기계 독해를 이용한 질문-답변 생성을 활용한 방법이 시도되었으나, 충분한 데이터 확보가 필요하거나 정확도가 부족하였다. 본 논문은 딥러닝 모델을 기반한 개체명 인식기와 질문-답변쌍 정확도 측정기를 활용하여 생성, 필터링한 질문-답변 쌍에 대해 일치도를 점수화하는 방법을 제안하였다. 이러한 기계적 사실관계 확인 점수와 사람의 평가 점수의 분포를 비교하여 방법의 타당성을 입증하였다.

  • PDF